【題目】如圖,在長(zhǎng)方形ACDF中,AC=DF,點(diǎn)B在CD上,點(diǎn)E在DF上,BC=DE=a,AC=BD=b,AB=BE=c,且AB⊥BE.
(1)用兩種不同的方法表示出長(zhǎng)方形ACDF的面積S,并探求a,b,c之間的等量關(guān)系(需要化簡(jiǎn))
(2)請(qǐng)運(yùn)用(1)中得到的結(jié)論,解決下列問(wèn)題:
①求當(dāng)c=10,a=6時(shí),求S的值;
②當(dāng)c﹣b=1,a=5時(shí),求S的值.
【答案】(1)詳見(jiàn)解析;(2)①112;②204.
【解析】
(1)方法一可直接求長(zhǎng)方形ACDF的面積;方法二可求四個(gè)三角形面積的和;根據(jù)面積相等化簡(jiǎn)可得a2+b2=c2;
(2)①根據(jù)(1)中結(jié)論可求出b=8,然后根據(jù)S=ab+b2計(jì)算即可;
②根據(jù)(1)中結(jié)論可求出b=12,然后根據(jù)S=ab+b2計(jì)算即可.
解:(1)由題意,得
方法一:S1=b(a+b)=ab+b2;
方法二:S2=ab+ab+(b﹣a)(b+a)+c2=ab+b2﹣a2+c2,
∵S1=S2,
∴ab+b2=ab+b2﹣a2+c2,
∴2ab+2b2=2ab+b2﹣a2+c2,
∴a2+b2=c2;
(2)∵a2+b2=c2,且c=10,a=6,
∴b=8,
∴S=ab+b2=6×8+64=112,
答:S的值為112;
②∵a2+b2=c2,
∴a2=c2﹣b2=(c+b)(c﹣b).
又∵c﹣b=1,a=5,
∴c+b=25,
∴b=12,
∴S=ab+b2=5×12+122=204.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,等腰Rt△ABC中,∠BAC=90°,AD⊥BC于D,∠ABC的平分線分別交AC、AD于E、F兩點(diǎn),M為EF的中點(diǎn),延長(zhǎng)AM交BC于點(diǎn)N,連接DM,下列結(jié)論:①AE=AF;②DF=DN;③AE=CN;④△AMD和△DMN的面積相等,其中錯(cuò)誤的結(jié)論個(gè)數(shù)是( )
A.3個(gè)B.2個(gè)C.1個(gè)D.0個(gè)
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,已知△ABC的三個(gè)頂點(diǎn)分別為A(2,3)、B(3,1)、C(-2,-2).
(1)請(qǐng)?jiān)趫D中作出△ABC關(guān)于y軸對(duì)稱圖形△DEF(A、B、C的對(duì)應(yīng)點(diǎn)分別是D、E、F),并直寫出D、E、F的坐標(biāo).D、E、F點(diǎn)的坐標(biāo)是:D( , ) E( , ) F( , );
(2)求四邊形ABED的面積.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知,△ABC中,∠C=90°.
(1)若AC=4,BC=3,AE=,DE⊥AC.且DE=DB,求AD的長(zhǎng);
(2)請(qǐng)你用沒(méi)有刻度的直尺和圓規(guī),在線段AB上找一點(diǎn)F,使得點(diǎn)F到邊AC的距離等于FB(注:不寫作法,保留作圖痕跡,對(duì)圖中涉及到的點(diǎn)的用字母進(jìn)行標(biāo)注)
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,已知的外角的平分線交邊的垂直平分線于點(diǎn).于點(diǎn),于點(diǎn).
(1)求證:
(2)若,,求的長(zhǎng)
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖1,在等腰中,,點(diǎn)為邊上一點(diǎn)(不與點(diǎn)、點(diǎn)重合),,垂足為,交于點(diǎn).
(1)請(qǐng)猜想與之間的數(shù)量關(guān)系,并證明;
(2)若點(diǎn)為邊延長(zhǎng)線上一點(diǎn),,垂足為,交延長(zhǎng)線于點(diǎn),請(qǐng)?jiān)趫D2中畫出圖形,并判斷(1)中的結(jié)論是否成立.若成立,請(qǐng)證明;若不成立,請(qǐng)寫出你的猜想并證明.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知當(dāng),二次函數(shù)的值相等且大于零,若,,三點(diǎn)都在此函數(shù)的圖象上,則,,的大小關(guān)系為( )
A. B. C. D.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖所示,在△ABC中,AB=AC,BD⊥AC于D,CE⊥AB于E,BD,CE相交于F.
求證:AF平分∠BAC.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】從邊長(zhǎng)為a的正方形中剪掉一個(gè)邊長(zhǎng)為b的正方形(如圖1),然后將剩余部分拼成一個(gè)長(zhǎng)方形(如圖2).
(1)上述操作能驗(yàn)證的等式是________(填A或B或C)
A.a2-2ab+b2=(a-b)2
B.a2-b2=(a+b)(a-b)
C.a2+ab=a(a+b)
(2)應(yīng)用你從(1)中選出的等式,完成下列各題:
①已知x2-4y2=12,x+2y=4,求x-2y的值
②計(jì)算:(1-)(1-)(1-)…(1-)(1-)
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com