【題目】已知:如圖,在Rt△ABC中,∠ABC=90°,以AB為直徑的⊙O交AC于E點,D為BC的中點.求證:DE與⊙O相切.

【答案】證明:連接OD,OE,
∵O,D分別是AB,BC中點,
∴OD∥AC,
∴∠2=∠A,∠3=∠1,
∵OA=OE,
∴∠A=∠3,
∴∠1=∠2,
在△OED和△OBD中, ,
∴△OED≌△OBD,
∴∠OED=∠ABC=90°,
∴DE⊥OE,
∵點D在⊙O上,
∴DE與⊙O相切.

【解析】先判斷出,∠2=∠A,∠3=∠1,進而判斷出∠1=∠2,即可判斷出△OED≌△OBD即可得出DE⊥OE,即可得出結(jié)論.
【考點精析】關(guān)于本題考查的圓周角定理和切線的判定定理,需要了解頂點在圓心上的角叫做圓心角;頂點在圓周上,且它的兩邊分別與圓有另一個交點的角叫做圓周角;一條弧所對的圓周角等于它所對的圓心角的一半;切線的判定方法:經(jīng)過半徑外端并且垂直于這條半徑的直線是圓的切線才能得出正確答案.

練習冊系列答案
相關(guān)習題

科目:初中數(shù)學 來源: 題型:

【題目】已知一次函數(shù),增大而增大,它的圖象經(jīng)過點且與軸的夾角為,

確定這個一次函數(shù)的解析式;

假設(shè)已知中的一次函數(shù)的圖象沿軸平移兩個單位,求平移以后的直線及直線與軸的交點坐標.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,等腰△ABC中,AB=AC,BC∥x軸,點A,C在反比例函數(shù)y= (x>0)的圖象上,點B在反比例函數(shù)y= (x>0)的圖象上,則△ABC的面積為

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】已知函數(shù)y=x2﹣(m﹣2)x+m的圖象過點(﹣1,15),設(shè)其圖象與x軸交于點A,B(A在B的左側(cè)),點C在圖象上,且SABC=1,求:
(1)求m;
(2)求點A,點B的坐標;
(3)求點C的坐標.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】解方程
(1)3x2﹣6x+1=0(用配方法)
(2)3(x﹣1)2=x(x﹣1)

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】二次函數(shù)y=ax2+bx+c的圖象如圖所示,對稱軸x=﹣1,下列五個代數(shù)式ab、ac、a﹣b+c、b2﹣4ac、2a+b中,值大于0的個數(shù)為(

A.5
B.4
C.3
D.2

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】(2015攀枝花,第15題,4分)如圖,在邊長為2的等邊△ABC中,DBC的中點,EAC邊上一點,則BE+DE的最小值為_____

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】已知y=y1﹣y2 , y1與x2成正比例,y2與x﹣1成反比例,當x=﹣1時,y=3;當x=2時,y=﹣3.
(1)求y與x之間的函數(shù)關(guān)系;
(2)當x= 時,求y的值.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】具備下列條件的三角形中,不是直角三角形的是(

A. ∠A+∠B=∠C B. ∠B=∠C=∠A

C. ∠A=90°-∠B D. ∠A-∠B=90°

查看答案和解析>>

同步練習冊答案