【題目】如圖,已知梯形ABCD中,AD∥BC,AB=CD,點E在對角線AC上,且滿足∠ADE=∠BAC.
(1)求證:CDAE=DEBC;
(2)以點A為圓心,AB長為半徑畫弧交邊BC于點F,聯(lián)結AF.求證:AF2=CECA.
【答案】(1)證明見解析;(2)證明見解析.
【解析】試題分析:(1)根據(jù)相似三角形的判定得出△ADE∽△CAB,再利用相似三角形的性質證明即可;
(2)根據(jù)相似三角形的判定得出△CDE∽△CAD,再利用相似三角形的性質證明即可.
試題解析:
證明(1)∵AD∥BC,
∴∠DAE=∠ACB,
∵∠ADE=∠BAC,
∴△ADE∽△CAB,
∴,
∴ABAE=DEBC,
∵AB=CD,
∴CDAE=DEBC;
(2)∵AD∥BC,AB=CD,
∴∠ADC=∠DAB,
∵∠ADE=∠BAC,
又∵∠ADC=∠ADE+∠CDE,∠DAB=∠BAC+∠CAD,
∴∠CDE=∠CAD,
∴△CDE∽△CAD,
∴ ,
∴CD2=CECA,
由題意,得AB=AF,AB=CD,
∴AF=CD,
∴AF2=CECA.
科目:初中數(shù)學 來源: 題型:
【題目】24.在矩形ABCD中,將點A翻折到對角線BD上的點M處,折痕BE交AD于點E.將點C翻折到對角線BD上的點N處,折痕DF交BC于點F.
(1)求證:四邊形BFDE為平行四邊形;
(2)若四邊形BFDE為菱形,且AB=2,求BC的長.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】商場某種商品平均每天可銷售30件,每件盈利50元。為了盡快減少庫存,商場決定采取適當?shù)慕祪r措施。經(jīng)調查發(fā)現(xiàn),每件商品每降價1元,商場平均每天可多售出2件。設每件商品降價元。據(jù)此規(guī)律,請回答:
(1)商場日銷售量增加_____件,每件商品盈利_____元(用含的代數(shù)式表示)。
(2)在上述條件不變、銷售正常情況下,每件商品降價多少元時,商場日盈利可達到2100元?
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,正方形ABCD中,,點E在邊BC上,,將沿DE對折至,延長EF交邊AB于點C,連接DG,BF,給出以下結論:≌;;;∽,其中所有正確結論的個數(shù)是
A. 1 B. 2 C. 3 D. 4
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】閱讀下面材料:小丁在研究數(shù)學問題時遇到一個定義:對于排好順序的三個數(shù):x1,x2,x3,稱為數(shù)列x1,x2,x3,計算,,,將這三個數(shù)的最小值稱為數(shù)列x1,x2,x3的價值.例如,對于數(shù)列2,-1,3,因為,,,所以數(shù)列2,-1,3的價值為.
小丁進一步發(fā)現(xiàn):當改變這三個數(shù)的順序時,所得到的數(shù)列都可以按照上述方法計算其相應的價值.如數(shù)列-1,2,3的價值為;數(shù)列3,-1,2的價值為1:…經(jīng)過研究,小丁發(fā)現(xiàn),對于“2,-1,3”這三個數(shù),按照不同的排列順序得到的不同數(shù)列中,價值的最小值為.根據(jù)以上材料,回答下列問題:
(1)數(shù)列4,3,-2的價值為______.
(2)將“4,3,-2”這三個數(shù)按照不同的順序排列,可得到若干個數(shù)列,求這些數(shù)列的價值的最小值(請寫出過程并作答).
(3)將3,-8,a(a>1)這三個數(shù)按照不同的順序排列,可得到若干個數(shù)列.若這些數(shù)列的價值的最小值為1,則a的值為_______ (直接寫出答案).
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】仔細觀察下列等式:
第1個:22﹣1=1×3
第2個:32﹣1=2×4
第3個:42﹣1=3×5
第4個:52﹣1=4×6
第5個:62﹣1=5×7
…
這些等式反映出自然數(shù)間的某種運算規(guī)律.按要求解答下列問題:
(1)請你寫出第6個等式: ;
(2)設n(n≥1)表示自然數(shù),則第n個等式可表示為 ;
(3)運用上述結論,計算:.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】為了鼓勵節(jié)約用電,某地用電標準規(guī)定:如果每戶每月用電不超過度,那么每度按元繳納;超過部分則按每度元繳納.
(1)某戶月份用電度,共交電費元,求.
(2)若該戶月份的電費平均每度元,求月份共用電多少度?應交電費多少元?
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,已知:AB是⊙O的直徑,點C在⊙O上,CD是⊙O的切線,AD⊥CD于點D,E是AB延長線上的一點,CE交⊙O于點F,連接OC,AC,若∠DAO=105°,∠E=30°.
(Ⅰ)求∠OCE的度數(shù);
(Ⅱ)若⊙O的半徑為2,求線段EF的長.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com