【題目】仔細(xì)觀察下列等式:
第1個(gè):22﹣1=1×3
第2個(gè):32﹣1=2×4
第3個(gè):42﹣1=3×5
第4個(gè):52﹣1=4×6
第5個(gè):62﹣1=5×7
…
這些等式反映出自然數(shù)間的某種運(yùn)算規(guī)律.按要求解答下列問(wèn)題:
(1)請(qǐng)你寫(xiě)出第6個(gè)等式: ;
(2)設(shè)n(n≥1)表示自然數(shù),則第n個(gè)等式可表示為 ;
(3)運(yùn)用上述結(jié)論,計(jì)算:.
【答案】(1) 72﹣1=6×8;(2) (n+1)2﹣1=n(n+2);(3).
【解析】
(1)根據(jù)題中所給出的例子找出規(guī)律,即可得到第六個(gè)等式.
(2)根據(jù)題中所給出的例子找出規(guī)律,進(jìn)行解答即可.
(3)根據(jù)所得結(jié)論,進(jìn)行化簡(jiǎn),即可得到答案.
解:(1)∵第1個(gè):22-1=1×3
第2個(gè):32-1=2×4
第3個(gè):42-1=3×5
第4個(gè):52-1=4×6
第5個(gè):62-1=5×7,
∴第6個(gè)等式:72-1=6×8;
故答案為:72-1=6×8;
(2)設(shè)n(n≥1)表示自然數(shù),則第n個(gè)等式可表示為:(n+1)2-1=n(n+2);
故答案為:(n+1)2-1=n(n+2);
(3)
=
=
=;
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,在△ABC中,點(diǎn)D是AB的中點(diǎn),點(diǎn)F是BC延長(zhǎng)線上一點(diǎn),連接DF,交AC于點(diǎn)E,連接BE,∠A=∠ABE.
(1)求證:DF是線段AB的垂直平分線;
(2)當(dāng)AB=AC,∠A=46°時(shí),求∠EBC及∠F的度數(shù).
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,在平面直角坐標(biāo)系中,直線l1:y=﹣x與反比例函數(shù)y=的圖象交于A,B兩點(diǎn)(點(diǎn)A在點(diǎn)B左側(cè)),已知A點(diǎn)的縱坐標(biāo)是2:
(1)求反比例函數(shù)的表達(dá)式;
(2)將直線l1:y=﹣x向上平移后的直線l2與反比例函數(shù)y=在第二象限內(nèi)交于點(diǎn)C,如果△ABC的面積為30,求平移后的直線l2的函數(shù)表達(dá)式.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,已知梯形ABCD中,AD∥BC,AB=CD,點(diǎn)E在對(duì)角線AC上,且滿足∠ADE=∠BAC.
(1)求證:CDAE=DEBC;
(2)以點(diǎn)A為圓心,AB長(zhǎng)為半徑畫(huà)弧交邊BC于點(diǎn)F,聯(lián)結(jié)AF.求證:AF2=CECA.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】(1)如圖1,,求的度數(shù). (提示:作).
(2)如圖2,,當(dāng)點(diǎn)在線段上運(yùn)動(dòng)時(shí),,求與、之間的數(shù)量關(guān)系,并說(shuō)明理由.
(3)在(2)的條件下,如果點(diǎn)在射線上運(yùn)動(dòng),請(qǐng)你直接寫(xiě)出與、之間的數(shù)量關(guān)系.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,已知,點(diǎn)A(0,0)、B(4,0)、C(0,4),在△ABC內(nèi)依次作等邊三角形,使一邊在x軸上,另一個(gè)頂點(diǎn)在BC邊上,作出的等邊三角形分別是第1個(gè)△AA1B1,第2個(gè)△B1A2B2,第3個(gè)△B2A3B3,…則第2017個(gè)等邊三角形的邊長(zhǎng)等于( 。
A. B. C. D.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,在ABCD中,AB=8,BC=5,以點(diǎn)A為圓心,以任意長(zhǎng)為半徑作弧,分別交AD、AB于點(diǎn)P、Q,再分別以P、Q為圓心,以大于PQ的長(zhǎng)為半徑作弧,兩弧在∠DAB內(nèi)交于點(diǎn)M,連接AM并延長(zhǎng)交CD于點(diǎn)E,則CE的長(zhǎng)為( )
A. 3B. 5C. 2D. 6.5
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知,等邊三角形ABC的邊長(zhǎng)為5,點(diǎn)P在線段AB上,點(diǎn)D在線段BC上,且△PDE是等邊三角形.
(1)初步嘗試:若點(diǎn)P與點(diǎn)A重合時(shí)(如圖1),BD+BE= .
(2)類比探究:將點(diǎn)P沿AB方向移動(dòng),使AP=1,其余條件不變(如圖2),試計(jì)算BD+BE的值是多少?
(3)拓展遷移:如圖3,在△ABC中,AB=AC,∠BAC=70°,點(diǎn)P在線段AB的延長(zhǎng)線上,點(diǎn)D在線段CB的延長(zhǎng)線上,在△PDE中,PD=PE,∠DPE=70°,設(shè)BP=a,請(qǐng)直接寫(xiě)出線段BD、BE之間的數(shù)量關(guān)系(用含a的式子表示)
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,在正方形ABCD中,E是對(duì)角線BD上一點(diǎn),且滿足=AD,連接CE并延長(zhǎng)交AD于點(diǎn)F,連接AE,過(guò)點(diǎn)B作于點(diǎn)G,延長(zhǎng)BG交AD于點(diǎn)H.在下列結(jié)論中:①;②;③ . 其中不正確的結(jié)論有( )
A. 0個(gè)B. 1個(gè)C. 2個(gè)D. 3個(gè)
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com