【題目】如圖,已知矩形ABCD的一條邊AD=8,將矩形ABCD折疊,使得頂點B落在CD邊上的點P處,折痕與BC交于點O.

(1)求證:△OCP∽△PDA

(2)若PO:PA=1:2,則邊AB的長是多少?

【答案】(1)證明見解析;(2)邊AB的長為10.

【解析】試題分析:(1)利用折疊和矩形的性質(zhì)可得到∠C=DAPD=POC,可證得相似;

2)根據(jù)相似三角形的性質(zhì)求出PC長以及APOP的關系,然后在RtPCO中運用勾股定理求出OP,從而求出AB長.

試題解析:(1)如圖.∵四邊形ABCD是矩形,AD=BC,DC=AB,DAB=B=C=D=90°.由折疊可得AP=AB,PO=BOPAO=BAO,APO=B∴∠APO=90°,∴∠APD=90°﹣CPO=POC∵∠D=C,APD=POC,∴△OCP∽△PDA

2POPA=12===,PD=2OC,PA=2OPDA=2CPAD=8,CP=4BC=8.設OP=x,OB=x,CO=8x

RtPCO中,∵∠C=90°,CP=4,OP=xCO=8x,x2=(8x2+42解得x=5,AB=AP=2OP=10,∴邊AB的長為10

練習冊系列答案
相關習題

科目:初中數(shù)學 來源: 題型:

【題目】嘉琪同學要證明命題兩組對邊分別相等的四邊形是平行四邊形是正確的,她先用尺規(guī)作出了如圖所示的□ABCD,并寫出了如下尚不完整的已知和求證.

已知:如圖,在四邊形ABCD中,BC=AD,AB=  

求證:四邊形ABCD  四邊形.

1)補全已知和求證(在方框中填空);

2)嘉琪同學想利用三角形全等,依據(jù)兩組對邊分別平行的四邊形是平行四邊形來證明.請你按她的想法完成證明過程.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】在求兩位數(shù)的平方時,可以用列豎式的方法進行速算,求解過程如圖1所示.

1)仿照圖1,在圖2中補全豎式;

2)仿照圖1,用列豎式的方法計算一個十位數(shù)字是的兩位數(shù)的平方,過程部分如圖3所示,則這個兩位數(shù)為 (用含的代數(shù)式表示).

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】已知:M=3a2+4ab -5a-6,N=a2-2ab-4

(1)化簡:5M-(3N + 4M),結(jié)果用含a、b的式子表示.

(2)若式子5M-(3N + 4M)的值與字母a的取值無關,求b4+M-N-的值.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】星光廚具店購進電飯煲和電壓鍋兩種電器進行銷售其進價與售價如表

進價(元/臺)

售價(元/臺)

電飯煲

200

250

電壓鍋

160

200

1)一季度,廚具店購進這兩種電器共30臺,用去了5600元,并且全部售完,問廚具店在該買賣中賺了多少錢?

2)為了滿足市場需求,二季度廚具店決定采購電飯煲和電壓鍋共50臺,且電飯煲的數(shù)量不大于電壓鍋的,請你通過計算判斷,如何進貨廚具店賺錢最多?最大利潤是多少?

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,在□ABCD中,AD2AB,FAD的中點,作CEAB,垂足E在線段AB上,連接EFCF,則下列結(jié)論:(1) DCF=BCD;(2)EFCF(3)SCDFSCEF(4)DFE3AEF.其中正確結(jié)論的個數(shù)是( )

A. 1B. 2C. 3D. 4

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】ABCD中,點B關于AD的對稱點為B′,連接AB′,CB′,CB′ADF點.

1)如圖1,∠ABC=90°,求證:FCB′的中點;

2)小宇通過觀察、實驗、提出猜想:如圖2,在點B繞點A旋轉(zhuǎn)的過程中,點F始終為CB′的中點.小宇把這個猜想與同學們進行交流,通過討論,形成了證明該猜想的幾種想法:

想法1:過點B′B′GCDADG點,只需證三角形全等;

想法2:連接BB′ADH點,只需證HBB′的中點;

想法3:連接BB′BF,只需證∠B′BC=90°

請你參考上面的想法,證明FCB′的中點.(一種方法即可)

3)如圖3,當∠ABC=135°時,AB′,CD的延長線相交于點E,求的值.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】快遞員小王下午騎摩托車從總部出發(fā),在一條東西走向的街道上來回收送包裹.他行駛的情況記錄如下(向東記為,向西記為,單位:千米):

,,,,,,

1)小王最后是否回到了總部?

2)小王離總部最遠是多少米?在總部的什么方向?

3)如果小王每走米耗油毫升,那么小王下午騎摩托車一共耗油多少毫升?

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,矩形ABCD中,AB=4BC=8,PQ分別是直線BCAB上的兩個動點,AE=2,△AEQ沿EQ翻折形成△FEQ,連接PFPD,則PF+PD的最小值是().

A. B. C. D.

查看答案和解析>>

同步練習冊答案