【題目】如圖,已知△ABC是等邊三角形,BD是AC上的高線.作AE⊥AB于點(diǎn)A,交BD的延長(zhǎng)線于點(diǎn)E.取BE的中點(diǎn)M,連結(jié)AM.
(1)求證:△AEM是等邊三角形;
(2)若AE=2,求△AEM的面積.
【答案】(1)見(jiàn)解析;(2)
【解析】
(1)由等邊三角形的性質(zhì)可得∠ABD=30°,由直角三角形的性質(zhì)可得AM=EM,可得△AEM是等邊三角形;
(2)由直角三角形的性質(zhì)可求AD的長(zhǎng),即可求解.
證明:(1)∵△ABC是等邊三角形,BD是AC上的高線,
∴∠ABD=30°,且AE⊥AB,
∴∠AEB=60°,
∵點(diǎn)M是BE中點(diǎn),∠EAB=90°,
∴AM=EM,且∠AEB=60°,
∴△AEM是等邊三角形;
(2)∵△AEM是等邊三角形,AC⊥BD,
∴∠EAD=∠MAD=30°,DE=DN,AE=EM=2,
∴DE=AE=1,AD=DE=,
∴△AEM的面積=×EM×AD=×2×=.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】將兩個(gè)全等的直角三角形ABC和DBE按圖①方式擺放,其中∠ACB=∠DEB=90°,∠A=∠D=30°,點(diǎn)E落在AB上,DE所在直線交AC所在直線于點(diǎn)F.
(1)求證:AF+EF=DE;
(2)若將圖①中的△DBE繞點(diǎn)B按順時(shí)針?lè)较蛐D(zhuǎn)角α,且0°<α<60°,其它條件不變,請(qǐng)?jiān)趫D②中畫(huà)出變換后的圖形,并直接寫(xiě)出你在(1)中猜想的結(jié)論是否仍然成立;
(3)若將圖①中的△DBE繞點(diǎn)B按順時(shí)針?lè)较蛐D(zhuǎn)角β,且60°<β<180°,其它條件不變,如圖③.你認(rèn)為(1)中猜想的結(jié)論還成立嗎?若成立,寫(xiě)出證明過(guò)程;若不成立,請(qǐng)寫(xiě)出AF、EF與DE之間的關(guān)系,并說(shuō)明理由.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知正方形①、②在直線上,正方形③如圖放置,若正方形①、②的面積分別27和54,則正方形③的邊長(zhǎng)為______.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,在ABCD中,E是BC的中點(diǎn),連接AE并延長(zhǎng)交DC的延長(zhǎng)線于點(diǎn)F.
(1)求證:AB=CF;
(2)連接DE,若AD=2AB,求證:DE⊥AF.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,AB為⊙O的直徑,點(diǎn)C為⊙O上一點(diǎn),將弧BC沿直線BC翻折,使弧BC的中點(diǎn)D恰好與圓心O重合,連接OC,CD,BD,過(guò)點(diǎn)C的切線與線段BA的延長(zhǎng)線交于點(diǎn)P,連接AD,在PB的另一側(cè)作∠MPB=∠ADC.
(1)判斷PM與⊙O的位置關(guān)系,并說(shuō)明理由;
(2)若PC=,求四邊形OCDB的面積.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,在△ABC中,AB=AC,AB的垂直平分線交AB于M,交AC于N.
(1)若∠ABC=70°,求∠MNA的度數(shù).
(2)連接NB,若AB=8cm,△NBC的周長(zhǎng)是14cm.求BC的長(zhǎng);
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,在長(zhǎng)度為1個(gè)單位長(zhǎng)度的小正方形組成的正方形中,點(diǎn)A,B,C在小正方形的頂點(diǎn)上.
(1)在圖中畫(huà)出與△ABC關(guān)于直線l成軸對(duì)稱的△A′B′C′
(2)三角形ABC的面積為 ;
(3)在直線l上找一點(diǎn)P,使PA+PB的長(zhǎng)最短.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,直線PQ∥MN,點(diǎn)A在PQ上,直角△BEF的直角邊BE在MN上,且∠B=90°,∠BEF=30°.現(xiàn)將△BEF繞點(diǎn)B以每秒1°的速度按逆時(shí)針?lè)较蛐D(zhuǎn)(E,F(xiàn)的對(duì)應(yīng)點(diǎn)分別是E′,F(xiàn)′),同時(shí),射線AQ繞點(diǎn)A以每秒4°的速度按順時(shí)針?lè)较蛐D(zhuǎn)(Q的對(duì)應(yīng)點(diǎn)是Q′).設(shè)旋轉(zhuǎn)時(shí)間為t秒(0≤t≤45).
(1)∠MBF′=__.(用含t的代數(shù)式表示)
(2)在旋轉(zhuǎn)的過(guò)程中,若射線AQ′與邊E′F′平行時(shí),則t的值為__.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】為了保護(hù)視力,某學(xué)校開(kāi)展了全校性的視力保健活動(dòng),活動(dòng)前,隨機(jī)抽取部分學(xué)生,檢查他們的視力,結(jié)果如圖所示,(數(shù)據(jù)包括左端點(diǎn)不包括右端點(diǎn),精確到0.1);活動(dòng)后,再次檢查這部分學(xué)生的視力,結(jié)果如表格所示.
抽取的學(xué)生活動(dòng)后視力頻數(shù)分布表
分組 | 頻數(shù) |
4.0≤x<4.2 | 2 |
4.2≤x<4.4 | 4 |
4.4≤x<4.6 | 6 |
4.6≤x<4.8 | 10 |
4.8≤x<5.0 | 21 |
5.0≤x<5.2 | 7 |
(1)此次調(diào)查所抽取的樣本容量為 ;
(2)若視力達(dá)到4.8以上(含4.8)為達(dá)標(biāo),請(qǐng)估計(jì)活動(dòng)前該校學(xué)生的視力達(dá)標(biāo)率;
(3)請(qǐng)選擇適當(dāng)?shù)慕y(tǒng)計(jì)量,從兩個(gè)不同的角度分析活動(dòng)前后相關(guān)數(shù)據(jù),并評(píng)價(jià)視力保健活動(dòng)的效果.
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com