【題目】已知Rt△ABC, ∠C=90°,CD 是AB邊上的高, AC=4cm,BC=3cm,以點(diǎn)C為圓心作⊙C,使A、B、D三點(diǎn)至少有一個(gè)在圓內(nèi),且至少有一個(gè)在圓外,則⊙C半徑r范圍是_____

【答案】2.4< r<4

【解析】

Rt△ABC中,根據(jù)勾股定理求得AB的長(zhǎng),再利用Rt△ABC面積的兩種求法求得CD的長(zhǎng),由A、B、D三點(diǎn)至少有一個(gè)在圓內(nèi),且至少有一個(gè)在圓外,可得⊙C半徑要大于CD的長(zhǎng)小于AC的長(zhǎng),即可得⊙C半徑r范圍.

Rt△ABC, ∠C=90°,AC=4cm,BC=3cm,根據(jù)勾股定理求得AB=5cm.

∵CD AB邊上的高,

,即,

解得CD=2.4cm.

∵A、B、D三點(diǎn)至少有一個(gè)在圓內(nèi),且至少有一個(gè)在圓外,

∴⊙C半徑要大于CD的長(zhǎng)小于AC的長(zhǎng),

∴⊙C半徑r范圍為:2.4< r<4.

故答案為:2.4< r<4.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,在△ABC中,ABAC,DE是邊AB的垂直平分線,交ABE、交ACD,連接BD.

(1)若∠A40°,求∠DBC的度數(shù).

(2)若△BCD的周長(zhǎng)為16cm,△ABC的周長(zhǎng)為26cm,求BC的長(zhǎng).

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】本題滿分8如圖,在ABC中,AB=AC,DACABC的一個(gè)外角

實(shí)踐與操作:

根據(jù)要求尺規(guī)作圖,并在圖中標(biāo)明相應(yīng)字母保留作圖痕跡,不寫作法

1DAC的平分線AM;

2作線段AC的垂直平分線,與AM交于點(diǎn)F,與BC邊交于點(diǎn)E,連接AE、CF

猜想并證明:

判斷四邊形AECF的形狀并加以證明

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】甲、乙兩個(gè)文具店均出售鋼筆和筆記本,其中每支鋼筆定價(jià)10元,每本筆記本定價(jià)5元.兩個(gè)文具店在開展促銷活動(dòng)中,各自提出優(yōu)惠方案如下:

甲店:買一支鋼筆送一本筆記本;

乙店:買鋼筆或筆記本都按定價(jià)的80%付款.

現(xiàn)小明要購(gòu)買鋼筆30支,筆記本(>30).

(1)試用含的代數(shù)式表示:

①小明到甲店購(gòu)買所付款為 元;

②小明到乙店購(gòu)買所付款為 元;

(2)當(dāng)40時(shí),你能幫小明設(shè)計(jì)一種最為省錢的購(gòu)買方案嗎?試寫出你的購(gòu)買方案,并說(shuō)明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖所示,在矩形ABCD中,AD=4,點(diǎn)E在邊AD上,連接CE,以CE為邊向右上方作正方形CEFG,作FHAD,且垂足H在邊AD上,連接AF

(1)求證:FH=ED;

(2)設(shè)AE=x是否存在某個(gè)x的值,使得△AEF的面積為3?若存在求出x的值,若不存在,請(qǐng)說(shuō)明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖所示,D、E分別是△ABC的邊BC、AC上的點(diǎn),且AB=AC,AD=AE.

(1)若∠BAD=20°,則∠EDC= °.

(2)若∠EDC=20°,則∠BAD= °.

(3)設(shè)∠BAD=α,EDC=β,你能由(1)(2)中的結(jié)果找到α、β間所滿足的關(guān)系嗎?請(qǐng)說(shuō)明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,點(diǎn)EDBC的邊DB上,點(diǎn)ADBC內(nèi)部,∠DAE=BAC=90°,AD=AE,AB=AC.給出下列結(jié)論:

BD=CE;②∠ABD+ECB=45°;BDCE;BE2=2(AD2+AB2)﹣CD2.其中正確的是( 。

A. ①②③④ B. ②④ C. ①②③ D. ①③④

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知關(guān)于的函數(shù)為常數(shù))

(1)若函數(shù)的圖象與軸恰有一個(gè)交點(diǎn),求的值;

(2)若函數(shù)的圖象是拋物線,且頂點(diǎn)始終在軸上方,求的取值范圍.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】(9分)某批發(fā)商以每件50元的價(jià)格購(gòu)進(jìn)800T恤,第一個(gè)月以單價(jià)80元銷售,售出了200件;第二個(gè)月如果單價(jià)不變,預(yù)計(jì)仍可售出200件,批發(fā)商為增加銷售量,決定降價(jià)銷售,根據(jù)市場(chǎng)調(diào)查,單價(jià)每降低1元,可多售出10件,但最低單價(jià)應(yīng)高于購(gòu)進(jìn)的價(jià)格;第二個(gè)月結(jié)束后,批發(fā)商將對(duì)剩余的T恤一次性清倉(cāng)銷售,清倉(cāng)是單價(jià)為40元,設(shè)第二個(gè)月單價(jià)降低元.

1)填表:(不需化簡(jiǎn))

2)如果批發(fā)商希望通過銷售這批T恤獲利9000元,那么第二個(gè)月的單價(jià)應(yīng)是多少元?

查看答案和解析>>

同步練習(xí)冊(cè)答案