【題目】如圖,AB是⊙O的直徑,AC是弦,OD⊥AC于點D,過點A作⊙O的切線AP,AP與OD的延長線交于點P,連接PC、BC.
【1】猜想:線段OD與BC有何數量和位置關系,并證明你的結論.
【2】求證:PC是⊙O的切線
【答案】
【1】見解析
【2】見解析
【解析】(1)由已知得出OD是△ABC的中位線,從而得出結論
(2) 連接OC,證得△OAP≌△OCP,得出∠OCP=∠OAP,從而得出結論
(1)猜想:OD∥BC,CD=BC.
證明:∵OD⊥AC,
∴AD=DC
∵AB是⊙O的直徑,
∴OA=OB
∴OD是△ABC的中位線,
∴OD∥BC,OD=BC
(2)證明:連接OC,設OP與⊙O交于點E.
∵OD⊥AC,OD經過圓心O,
∴,即∠AOE=∠COE
在△OAP和△OCP中,
∵OA=OC,OP=OP,
∴△OAP≌△OCP,
∴∠OCP=∠OAP
∵PA是⊙O的切線,
∴∠OAP=90°.
∴∠OCP=90°,即OC⊥PC
∴PC是⊙O的切線.
科目:初中數學 來源: 題型:
【題目】實驗探究:
(1)如圖1,對折矩形紙片ABCD,使AD與BC重合,得到折痕EF,把紙片展開;再一次折疊紙片,使點A落在EF上,并使折痕經過點B,得到折痕BM,同時得到線段BN,MN.請你觀察圖1,猜想∠MBN的度數是多少,并證明你的結論.
(2)將圖1中的三角形紙片BMN剪下,如圖2,折疊該紙片,探究MN與BM的數量關系,寫出折疊方案,并結合方案證明你的結論.
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】某?萍紝嵺`社團制作實踐設備,小明的操作過程如下:
①小明取出老師提供的圓形細鐵環(huán),先通過在圓一章中學到的知識找到圓心O,再任意找出圓O的一條直徑標記為AB(如圖1),測量出AB=4分米;
②將圓環(huán)進行翻折使點B落在圓心O的位置,翻折部分的圓環(huán)和未翻折的圓環(huán)產生交點分別標記為C、D(如圖2);
③用一細橡膠棒連接C、D兩點(如圖3);
④計算出橡膠棒CD的長度.
小明計算橡膠棒CD的長度為( )
A. 2分米 B. 2分米 C. 3分米 D. 3分米
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】一家用電器開發(fā)公司研制出一種新型電子產品,每件的生產成本為18元,按定價40元出售,每月可銷售20萬件為了增加銷量,公司決定采取降價的辦法,經市場調研,每降價1元,月銷售量可增加2萬件.
求出月銷售量萬件與銷售單價元之間的函數關系式;
求出月銷售利潤萬元與銷售單價元之間的函數關系式;
若該月銷售利潤為480萬元,求此時的月銷售量和銷售單價各是多少元?
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】(1)解方程x2﹣4x=12;
(2)如圖,△ABP是由△ACE繞A點旋轉得到的,若∠APB=110°,∠B=30°,∠PAC=20°,求旋轉角的度數.
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】綜合與實踐
如圖,為等腰直角三角形,,點為斜邊的中點,是直角三角形,.保持不動,將沿射線向左平移,平移過程中點始終在射線上,且保持直線于點,直線于點.
(1)如圖1,當點與點重合時,與的數量關系是__________.
(2)如圖2,當點在線段上時,猜想與有怎樣的數量關系與位置關系,并對你的猜想結果給予證明;
(3)如圖3,當點在的延長線上時,連接,若,則的長為__________.
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】如圖,有一張矩形紙片,長10cm,寬6cm,在它的四角各減去一個同樣的小正方形,然后折疊成一個無蓋的長方體紙盒.若紙盒的底面(圖中陰影部分)面積是32cm2,求剪去的小正方形的邊長.設剪去的小正方形邊長是xcm,根據題意可列方程為( 。
A. 10×6﹣4×6x=32 B. (10﹣2x)(6﹣2x)=32
C. (10﹣x)(6﹣x)=32 D. 10×6﹣4x2=32
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】如圖,在邊長為1個單位長度的小正方形組成的網格中,點A,B,C都是格點.
(1)將△ABC向左平移6個單位長度得到△A1B1C1,請畫出△A1B1C1;
(2)將△ABC繞點O按逆時針方向旋轉180°得到△A2B2C2,請畫出△A2B2C2;
(3)作出△ABC關于直線l對稱的△A3B3C3,使A,B,C的對稱點分別是A3,B3,C3;
(4)△A2B2C2與△A3B3C3成_____________,△A1B1C1與△A2B2C2成_____________(填“中心對稱”或“軸對稱”).如果成中心對稱請你在圖中確定其對稱中心點P的位置.
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】如圖1,已知矩形AOCB,AB=6cm,BC=16cm,動點P從點A出發(fā),以3cm/s的速度向點O運動,直到點O為止;動點Q同時從點C出發(fā),以2cm/s的速度向點B運動,與點P同時結束運動.
(1)當出發(fā) 時,點P和點Q之間的距離是10cm;
(2)逆向發(fā)散:當運動時間為2s時,P、Q兩點的距離為 cm;當運動時間為4s時,P、Q兩點的距離為 cm;
(3)探索發(fā)現:如圖2,以點O為坐標原點,OC所在直線為x軸,OA所在直線為y軸,1cm長為單位長度建立平面直角坐標系,連接AC,與PQ相交于點D,若雙曲線y=過點D,問k的值是否會變化?若會變化,說明理由;若不會變化,請求出k的值.
查看答案和解析>>
湖北省互聯網違法和不良信息舉報平臺 | 網上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com