【題目】(1)解方程x2﹣4x=12;
(2)如圖,△ABP是由△ACE繞A點旋轉(zhuǎn)得到的,若∠APB=110°,∠B=30°,∠PAC=20°,求旋轉(zhuǎn)角的度數(shù).
【答案】(1)x=6 或 x=﹣2;(2)旋轉(zhuǎn)角的度數(shù)為 60°.
【解析】
(1)利用配方法將方程變形為(x-2)2=16,然后直接開平方即可.
(2)充分運用旋轉(zhuǎn)的性質(zhì),旋轉(zhuǎn)前后三角形全等,即△ABP≌△ACE,根據(jù)對應(yīng)角相等,三角形內(nèi)角和定理,對應(yīng)邊的夾角為旋轉(zhuǎn)角.
(1)x2-4x=12
(x-2)2=16
x-2=±4,
x=6或x=-2;
(2)∵∠APB=110°,∠B=30°,
∴∠BAP=180°-110°-30°=40°,
∵∠PAC=20°,
∴∠BAC=∠BAP+∠PAC=60°,
即旋轉(zhuǎn)角的度數(shù)為60°.
科目:初中數(shù)學 來源: 題型:
【題目】“天生霧、霧生露、露生耳”,銀耳是一種名貴食材,富含人體所需的多種氨基酸和微量元素,具有極高的藥用價值和食用價值.某銀耳培育基地的銀耳成熟了,需要采摘和烘焙.現(xiàn)準備承包給甲和乙兩支專業(yè)采摘隊,若承包給甲隊,預計12天才能完成,為了減小銀耳因氣候變化等原因帶來的損失,現(xiàn)決定由甲、乙兩隊同時采摘,則可以提前8天完成任務(wù).
(1)若單獨由乙隊采摘,需要幾天才能完成?
(2)若本次一共采摘了300噸新鮮銀耳,急需在9天內(nèi)進行烘焙技術(shù)處理.已知甲、乙兩隊每日烘焙量相當,甲隊單獨加工(烘焙)天完成100噸后另有任務(wù),剩下的200噸由乙隊加工(烘焙),乙隊剛好在規(guī)定的時間內(nèi)完工.若甲、乙兩隊從采摘到加工,每日工資分別是600元和1000元.問:銀耳培育基地此次需要支付給采摘隊的總工資是多少?
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖①,在 中,,平分的外角,與的垂直平分線相交于點,連結(jié).
(1)求證:;
(2)如圖②,的角平分線與中線相交于點,若,,,則 .(直接填數(shù)值)
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,AB是以O為圓心的半圓的直徑,半徑CO⊥AO,點M是上的動點,且不與點A、C、B重合,直線AM交直線OC于點D,連結(jié)OM與CM.
(1)若半圓的半徑為10.
①當∠AOM=60°時,求DM的長;
②當AM=12時,求DM的長.
(2)探究:在點M運動的過程中,∠DMC的大小是否為定值?若是,求出該定值;若不是,請說明理由.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,AB是⊙O的直徑,AC是弦,OD⊥AC于點D,過點A作⊙O的切線AP,AP與OD的延長線交于點P,連接PC、BC.
【1】猜想:線段OD與BC有何數(shù)量和位置關(guān)系,并證明你的結(jié)論.
【2】求證:PC是⊙O的切線
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,矩形紙片ABCD中,已知AD =8,折疊紙片使AB邊與對角線AC
重合,點B落在點F處,折痕為AE,且EF=3,則AB的長為( )
A. 3 B. 4
C. 5 D. 6
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,有長為 24m 的籬笆,現(xiàn)一面利用墻(墻的最大可用長度 a 為 10m)圍成中間隔有一道籬笆的長方形花圃,設(shè)花圃的寬 AB 為 xm,面積為 Sm2.
(1) 求 S 與 x 的函數(shù)關(guān)系式及 x 值的取值范圍;
(2) 要圍成面積為 45m2 的花圃,AB 的長是多少米?
(3) 當 AB 的長是多少米時,圍成的花圃的面積最大?
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com