【題目】如圖,ABC內接于OB=600,CDO的直徑,點PCD延長線上的一點,且AP=AC

1)求證:PAO的切線;

2)若PD=,求O的直徑.

【答案】1見解析22

【解析】解:(1)證明:連接OA,

∵∠B=600,∴∠AOC=2B=1200

OA=OC,∴∠OAC=OCA=300

AP=AC,∴∠P=ACP=300。

∴∠OAP=AOC﹣P=900。OAPA。

OAO的半徑,PAO的切線。

2)在RtOAP中,∵∠P=300,

PO=2OA=OD+PD。

OA=OD,PD=OA

PD=,2OA=2PD=2。

∴⊙O的直徑為2。.

1)連接OA,根據(jù)圓周角定理求出AOC,再由OA=OC得出ACO=OAC=300,再由AP=AC得出

P=300,繼而由OAP=AOC﹣P,可得出OAPA,從而得出結論。

2)利用含300的直角三角形的性質求出OP=2OA,可得出OP﹣PD=OD,再由PD=,可得出O的直徑。 

練習冊系列答案
相關習題

科目:初中數(shù)學 來源: 題型:

【題目】如圖,K是正方形ABCD內一點,以AK為一邊作正方形AKLM,使L,M,DAK的同旁,連接BKDM,試用旋轉的思想說明線段BKDM的關系.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】某超市計劃購進甲、乙兩種商品,甲種商品的進價比乙種商品的進價每件多80元,若用720元購進甲種商品的件數(shù)與用360元購進乙種商品的件數(shù)相同.

1)求甲、乙兩種商品的進價各是多少元?

2)已知甲種商品的售價為240/件,乙種商品的售價為130/件,若超市銷售甲、乙兩種商品共80件,其中銷售甲種商品為件(),設銷售完80件甲、乙兩種商品的總利潤為元,求之間的函數(shù)關系式,并求出的最小值.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,在邊長為8的正方形ABCD中,點OAD上一動點(4OA8),以O為圓心,OA的長為半徑的圓交邊CD于點E,連接OE、AE,過點E作⊙O的切線交邊BCF

1)求證:ODE∽△ECF;

2)在點O的運動過程中,設DE=

①求的最大值,并求此時⊙O的半徑長;

②判斷CEF的周長是否為定值,若是,求出CEF的周長;否則,請說明理由?

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】在一條東西走向河的一側有一村莊C,河邊原有兩個取水點A,B,其中ABAC,由于某種原因,由CA的路現(xiàn)在已經(jīng)不通,某村為方便村民取水決定在河邊新建一個取水點HAH、B在一條直線上),并新修一條路CH,測得CB3千米,CH2.4千米,HB1.8千米.

1)問CH是否為從村莊C到河邊的最近路?(即問:CHAB是否垂直?)請通過計算加以說明;

2)求原來的路線AC的長.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】在同一平面內,有相互平行的三條直線ab,c,且ab之間的距離為1,bc之間的距離是2,若等腰RtABC的三個頂點恰好各在這三條平行直線上,如圖所示,則△ABC的面積是_____

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】(知識背景)我國古代把直角三角形較短的直角邊稱為“勾”,較長的的直角邊稱為“股”,斜邊稱為“弦”.據(jù)《周髀算經(jīng)》記載,公元前1000多年就發(fā)現(xiàn)了“勾三股四弦五”的結論.像3、45這樣為三邊長能構成直角三角形的3個正整數(shù),稱為勾股數(shù).

(應用舉例)

觀察3,4,55,12,13;7,2425;

可以發(fā)現(xiàn)這些勾股數(shù)的勾都是奇數(shù),且從3起就沒有間斷過,

當勾為3時,股,弦

當勾為5時,股,弦;

當勾為7時,股,弦

請仿照上面三組樣例,用發(fā)現(xiàn)的規(guī)律填空:

1)如果勾用,且為奇數(shù))表示時,請用含有的式子表示股和弦,則股  ,弦  

(問題解決)

2)古希臘的哲學家柏拉圖也提出了構造勾股數(shù)組的公式.具體表述如下:如果,為大于1的整數(shù)),則、為勾股數(shù).請你證明柏拉圖公式的正確性;

3)畢達哥拉斯在他找到的勾股數(shù)的表達式中發(fā)現(xiàn)弦與股的差為1,若用為任意正整數(shù))表示勾股數(shù)中最大的一個數(shù),請你找出另外兩個數(shù)的表達式分別是多少.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,ABC中,∠A=∠C,點DAC上,點EBC上,AD=CEBCDC

1)求證:DBDE;

2)如圖2,若∠ABC90°,求∠BED的度數(shù);

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,己知△ABC,任取一點O,連接AO,BO,CO,并取它們的中點D,E,F,得△DEF,則下列說法:①△ABC與△DEF是位似圖形;②△ABC與△DEF是相似圖形;③△ABC與△DEF的周長比為12;④△ABC與△DEF的面積比為41. 正確的個數(shù)是( )

A. 1 B. 2 C. 3 D. 4

查看答案和解析>>

同步練習冊答案