【題目】中,

1)如圖①,點在斜邊上,以點為圓心,長為半徑的圓交于點,交于點,與邊相切于點.求證:;

2)在圖②中作,使它滿足以下條件:

①圓心在邊上;②經過點;③與邊相切.

(尺規(guī)作圖,只保留作圖痕跡,不要求寫出作法)

【答案】(1)見解析(2)見解析

【解析】

1)連接,可證得,結合平行線的性質和圓的特性可求得,可得出結論;

2)由(1)可知切點是的角平分線和的交點,圓心在的垂直平分線上,由此即可作出

1)證明:如圖①,連接,

的切線,

,

,

,

,

.

2)如圖②所示為所求.①

①作平分線交點,

②作的垂直平分線交,以為半徑作圓,

為所求.

證明:∵的垂直平分線上,

,

又∵平分,

,

,

,

與邊相切.

練習冊系列答案
相關習題

科目:初中數(shù)學 來源: 題型:

【題目】如圖,已知BA=AE=DC,AD=EC,CE⊥AE,垂足為E.
(1)求證:△DCA≌△EAC;
(2)只需添加一個條件,即 , 可使四邊形ABCD為矩形.請加以證明.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】已知一件文化衫價格為18元,一個書包的價格比一件文化衫價格的2倍還少6元.

(1)求一個書包的價格是多少元?

(2)某公司出資1 800元,拿出不少于350元但不超過400元的經費獎勵山區(qū)小學的優(yōu)秀學生,剩余經費還能為多少名山區(qū)小學的學生每人購買一個書包和一件文化衫?

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,拋物線y=a(x﹣1)(x﹣3)與x軸交于A,B兩點,與y軸的正半軸交于點C,其頂點為D.

(1)寫出C,D兩點的坐標(用含a的式子表示);
(2)設SBCD:SABD=k,求k的值;
(3)當△BCD是直角三角形時,求對應拋物線的解析式.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,等邊ABC邊長為10PAB上,QBC延長線,CQPA,過點PPEACE,過點PPFBQ,交AC邊于點F,連接PQAC于點D,則DE的長為_____

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】已知點P()在第一象限,則a的取值范圍在數(shù)軸上表示正確的是

A. B. C. D.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】已知拋物線y=a(x+3)(x﹣1)(a≠0),與x軸從左至右依次相交于A、B兩點,與y軸相交于點C,經過點A的直線y=﹣ x+b與拋物線的另一個交點為D.

(1)若點D的橫坐標為2,求拋物線的函數(shù)解析式;
(2)若在第三象限內的拋物線上有點P,使得以A、B、P為頂點的三角形與△ABC相似,求點P的坐標;
(3)在(1)的條件下,設點E是線段AD上的一點(不含端點),連接BE.一動點Q從點B出發(fā),沿線段BE以每秒1個單位的速度運動到點E,再沿線段ED以每秒 個單位的速度運動到點D后停止,問當點E的坐標是多少時,點Q在整個運動過程中所用時間最少?

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,在平面直角坐標系中,四邊形ABCD是以AB為直徑的⊙M的內接四邊形,點A,B在x軸上,△MBC是邊長為2的等邊三角形,過點M作直線l與x軸垂直,交⊙M于點E,垂足為點M,且點D平分

(1)求過A,B,E三點的拋物線的解析式;
(2)求證:四邊形AMCD是菱形;
(3)請問在拋物線上是否存在一點P,使得△ABP的面積等于定值5?若存在,請求出所有的點P的坐標;若不存在,請說明理由.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】已知直線y=kx+b與拋物線y=ax2(a>0)相交于A、B兩點(點A在點B的左側),與y軸正半軸相交于點C,過點A作AD⊥x軸,垂足為D.

(1)若∠AOB=60°,AB∥x軸,AB=2,求a的值;
(2)若∠AOB=90°,點A的橫坐標為﹣4,AC=4BC,求點B的坐標;
(3)延長AD、BO相交于點E,求證:DE=CO.

查看答案和解析>>

同步練習冊答案