【題目】如圖, 已知∠1+∠2=180o, ∠3=∠B, 試說明∠DEC+∠C=180o. 請完成下列填空:
解:∵∠1+∠2=180o(已知)
又∵∠1+ =180o(平角定義)
∴∠2= (同角的補角相等)
∴ (內錯角相等,兩直線平行)
∴∠3 = (兩直線平行,內錯角相等)
又∵∠3=∠B(已知)
∴ (等量代換)
∴ ∥ ( )
∴∠DEC+∠C=180o( )
【答案】見解析
【解析】試題分析:根據同角的補角可證: ∠2=∠4,再根據內錯角相等,兩直線平行可證得: AB∥EF , 根據兩直線平行,內錯角相等可得:∠3=∠ADE,等量代換可得∠ADE=∠B ,
再利用同位角相等兩直線平行可得: DE∥BC,利用兩直線平行,同旁內角互補可得:∠DEC+∠C =180°.
試題解析:∵∠1+∠2=180°(已知),
又∵∠1+ ∠4 =180°(平角定義),
∴∠2= ∠4 (同角的補角相等),
∴ AB∥EF (內錯角相等,兩直線平行),
∴∠3= ∠ADE (兩直線平行,內錯角相等),
又∵∠3=∠B(已知),
∴ ∠ADE=∠B (等量代換),
DE ∥ BC ( 同位角相等,兩直線平行 ),
∴∠DEC+∠C =180°( 兩直線平行,同旁內角互補 ).
科目:初中數學 來源: 題型:
【題目】如圖,在直角坐標系中,矩形OABC的頂點O與坐標原點重合,A,C分別在坐標軸上,點B的坐標為(4,2),直線y=–x+3交AB,BC于點M,N,反比例函數的圖象經過點M,N.
(1)求反比例函數的解析式;
(2)若點P在x軸上,且△OPM的面積與四邊形BMON的面積相等,求點P的坐標.
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】如圖,矩形ABCD中,AB=6,BC=8,點E是射線CB上的一個動點,把△DCE沿DE折疊,點C的對應點為C′.
(1)若點C′剛好落在對角線BD上時,BC′=;
(2)當B C′∥DE時,求CE的長;
(3)若點C′剛好落在線段AD的垂直平分線上時,求CE的長.
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】已知AB是⊙O的一條弦,點C是優(yōu)弧上一點.
(1)如圖①,若點P是弦AB與所圍成的弓形區(qū)域(不含弦AB與)內一點.求證:∠APB>∠ACB;
(2)如圖①,若點P在弦AB上方,且滿足∠APB=∠ACB,則點P在上嗎?為什么?
(3)請在圖②中直接用陰影部分表示出在弦AB與所圍成的弓形區(qū)域內滿足∠ACB<∠APB<2∠ACB的點P所在的范圍.
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】有一科技小組進行了機器人行走性能試驗,在試驗場地有A、B、C三點順次在同一筆直的賽道上,甲、乙兩機器人分別從A、B兩點同時同向出發(fā),歷時7分鐘同時到達C點,乙機器人始終以60米/分的速度行走,如圖是甲、乙兩機器人之間的距離y(米)與他們的行走時間x(分鐘)之間的函數圖象,請結合圖象,回答下列問題:
(1)A、B兩點之間的距離是 米,甲機器人前2分鐘的速度為 米/分;
(2)若前3分鐘甲機器人的速度不變,求線段EF所在直線的函數解析式;
(3)若線段FG∥x軸,則此段時間,甲機器人的速度為 米/分;
(4)求A、C兩點之間的距離;
(5)直接寫出兩機器人出發(fā)多長時間相距28米.
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】某天早晨,張強從家跑步去體育鍛煉,同時媽媽從體育場晨練結束回家,途中兩人相遇,張強跑到體育場后發(fā)現要下雨,立即按原路返回,遇到媽媽后兩人一起回到家(張強和媽媽始終在同一條筆直的公路上行走).如圖是兩人離家的距離y(米)與張強出發(fā)的時間x(分)之間的函數圖象,根據圖象信息解答下列問題:
(1)求張強返回時的速度;
(2)媽媽比按原速返回提前多少分鐘到家?
(3)請直接寫出張強與媽媽何時相距1000米?
查看答案和解析>>
湖北省互聯(lián)網違法和不良信息舉報平臺 | 網上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com