【題目】平衡車越來越受到中學生的喜愛,某公司今年從廠家以3000元/輛的批發(fā)價購進某品牌平衡車300輛進行銷售,零售價格為4200元/輛,暑期將至,公司決定拿出一部分該品牌平衡車以4000元/輛的價格進行促銷.設全部售出獲得的總利潤為y元,今年暑假期間拿出促銷的該品牌平衡車數(shù)量為x輛,根據(jù)上述信息,解答下列問題:
(1)求y與x之間的函數(shù)解析式(也稱關系式),并直接寫出x的取值范圍;
(2)若以促銷價進行銷售的數(shù)量不低于零售價銷售數(shù)量的 ,該公司應拿出多少輛該品牌平衡車促銷才能使這批車的銷售利潤最大?并求出最大利潤.
【答案】(1)y=﹣200x+360000(0≤x≤300);(2)公司應拿出60輛該品牌平衡車促銷才能使這批車的銷售利潤最大,最大利潤為348000元.
【解析】
(1)根據(jù)“利潤=售價-成本”結(jié)合“總利潤=促銷部分的利潤+正常零售的利潤”列式進行計算即可得;
(2)根據(jù)以促銷價進行銷售的數(shù)量不低于零售價銷售數(shù)量的列出關于x的不等式,然后求出x的取值范圍,繼而根據(jù)一次函數(shù)的性質(zhì)進行求解即可.
(1)根據(jù)題意得:
y=(4000﹣3000)x+(4200﹣3000)(300﹣x)=﹣200x+360000(0≤x≤300);
(2)根據(jù)題意得:x≥(300-x),
解得x≥60,
由(1)可知,y=﹣200x+360000,
∵﹣200<0,
∴y隨x的增大而減小,
∴x=60時,y的值增大,最大值為:﹣200×60+360000=348000(元),
答:公司應拿出60輛該品牌平衡車促銷才能使這批車的銷售利潤最大,最大利潤為348000元.
科目:初中數(shù)學 來源: 題型:
【題目】《如果想毀掉一個孩子,就給他一部手機!》這是2017年微信圈一篇熱傳的文章.國際上,法國教育部宣布從 2018 年9月新學期起小學和初中禁止學生使用手機.為了解學生手機使用情況,某學校開展了“手機伴我健康行”主題活動,他們隨機抽取部分學生進行“使用手機目的”和“每周使用手機的時間”的問卷調(diào)查,并繪制成如圖①,②的 統(tǒng)計圖,已知“查資料”的人數(shù)是 40人.請你根據(jù)以上信息解答下列問題:
(1)在扇形統(tǒng)計圖中,“玩游戲”對應的百分比為______,圓心角度數(shù)是______度;
(2)補全條形統(tǒng)計圖;
(3)該校共有學生2100人,估計每周使用手機時間在2 小時以上(不含2小時)的人數(shù).
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】在平面宜角坐標系xOy中,直線y=x+4與x軸,y軸交于點A,B.第一象限內(nèi)有一點P(m,n),正實數(shù)m,n滿足4m+3n=12
(1)連接AP,PO,△APO的面積能否達到7個平方單位?為什么?
(2)射線AP平分∠BAO時,求代數(shù)式5m+n的值;
(3)若點A′與點A關于y軸對稱,點C在x軸上,且2∠CBO+∠PA′O=90°,小慧演算后發(fā)現(xiàn)△ACP的面積不可能達到7個平方單位.請分析并評價“小薏發(fā)現(xiàn)”.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】某服裝廠生產(chǎn)一種西裝和領帶,西裝每套定價300元,領帶每條定價40元.廠方在開展促銷活動期間,向客戶提供兩種優(yōu)惠方案:①買一套西裝送一條領帶;②西裝和領帶的定價打9折付款.現(xiàn)有某客戶要到該服裝廠購買西裝50套,領帶條().
(1)若該客戶按方案一購買,需付款______元.(用含的代數(shù)式表示),若該客戶按方案二購買,需付款______元.(用含的代數(shù)式表示)
(2)若該客戶購買西裝50套,領帶60條,請通過計算說明按哪種方案購買較為合算;
(3)若該客戶購買西裝50套,領帶200條,請通過計算說明按哪種方案購買較為合算.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,把△ABC紙片沿MN折疊,使點C落在四邊形ABNM的內(nèi)部時,則∠1、∠2和 ∠C之間有一種數(shù)量關系始終保持不變. 這個關系是___.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,在△ABC中,AB=AC,∠BAC=90°,AH⊥BC于點H,過點C作CD⊥AC,連接AD,點M為AC上一點,且AM=CD,連接BM交AH于點N,交AD于點E.
(1)若AB=3,AD=,求△BMC的面積;
(2)點E為AD的中點時,求證:AD=BN .
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,在Rt△ABC中,∠BAC=90°,D是BC的中點,E是AD的中點,過點A作AF∥BC交BE的延長線于點F.
(1)求證:△AEF≌△DEB;
(2)求證:四邊形ADCF是菱形.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com