【題目】如圖,已知PA,PB是⊙O的兩條切線,AB為切點.C是⊙O上一個動點.且不與A,B重合.若∠PACα,∠ABCβ,則αβ的關(guān)系是_______

【答案】

【解析】

分點C在優(yōu)弧AB上和劣弧AB上兩種情況討論,根據(jù)切線的性質(zhì)得到∠OAC的度數(shù),再根據(jù)圓周角定理得到∠AOC的度數(shù),再利用三角形內(nèi)角和定理得出αβ的關(guān)系.

解:當(dāng)點C在優(yōu)弧AB上時,如圖,

連接OAOB、OC,

PA是⊙O的切線,

∴∠PAO=90°

∴∠OAC=α-90°=OCA,

∵∠AOC=2ABC=2β

2α-90°+2β=180°

;

當(dāng)點C在劣弧AB上時,如圖,

PA是⊙O的切線,

∴∠PAO=90°

∴∠OAC= 90°-α=OCA,

∵∠AOC=2ABC=2β

290°-α+2β=180°,

.

綜上:αβ的關(guān)系是.

故答案為:.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖1,在平面直角坐標(biāo)系中,已知拋物線軸交于,兩點,與軸交于點

1)求拋物線的函數(shù)表達(dá)式;

2)若點P是位于直線BC上方拋物線上的一個動點,求BPC面積的最大值;

3)若點Dy軸上的一點,且以B,C,D為頂點的三角形與相似,求點D的坐標(biāo);

4)若點E為拋物線的頂點,點F3,a)是該拋物線上的一點,在軸、軸上分別找點M、N,使四邊形EFMN的周長最小,求出點M、N的坐標(biāo).

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在銳角ABC中,延長BC到點D,點OAC邊上的一個動點,過點O作直線MNBC,MN分別交∠ACB、∠ACD的平分線于E,F兩點,連接AE、AF,在下列結(jié)論中:①OEOF;②CECF;③若CE12CF5,則OC的長為6;④當(dāng)AOCO時,四邊形AECF是矩形,其中正確的有( 。

A.4B.3C.2D.1

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】已知正方形MNOK和正六邊形ABCDEF邊長均為1,把正方形放在正六邊形中,使OK邊與AB邊重合,如圖所示:按下列步驟操作:將正方形在正六邊形中繞點B順時針旋轉(zhuǎn),使KM邊與BC邊重合,完成第一次旋轉(zhuǎn);再繞點C順時針旋轉(zhuǎn),使MN邊與CD邊重合,完成第二次旋轉(zhuǎn)……連續(xù)經(jīng)過六次旋轉(zhuǎn).在旋轉(zhuǎn)的過程中,當(dāng)正方形和正六邊形的邊重合時,點B,M間的距離可能是( 。

A. 0.5B. 0.7C. 1D. 1

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】一般的,如果二次函數(shù)y=ax2+bx+c的圖象與x軸有兩個公共點,那么一元二次方程ax2+bx+c=0有兩個不相等的實數(shù)根.——蘇科版《數(shù)學(xué)》九年級(下冊)P21參考上述教材中的話,判斷方程x2﹣2x=﹣2實數(shù)根的情況是 ( )

A. 有三個實數(shù)根 B. 有兩個實數(shù)根 C. 有一個實數(shù)根 D. 無實數(shù)根

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,ABCD中,對角線AC和BD相交于點O,如果AC=12、BD=10、AB=m,那么m的取值范圍是( 。

A. 1<m<11 B. 2<m<22 C. 10<m<12 D. 5<m<6

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,一次函數(shù)的圖象與反比例函數(shù)的圖象相交于、兩點,其中點的坐標(biāo)為,點的坐標(biāo)為.

1)根據(jù)圖象,直接寫出滿足的取值范圍;

2)求這兩個函數(shù)的表達(dá)式;

3)點在線段上,且,求點的坐標(biāo).

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】已知點P(1,3),Q(3,m)是函數(shù)圖象上兩點.

(1)求k值和m值.

(2)直線的圖象交于A,直線與直線平行,與x軸交于點B,且與的圖象交于點C.若線段OA,OB, BC及函數(shù) 圖象在AC之間部分圍成的區(qū)域內(nèi)(不含邊界)恰有2個整點,結(jié)合函數(shù)圖象,直接寫出b的取值范圍.(注:橫縱坐標(biāo)均為整數(shù)的點稱為整點)

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】己知:如圖,拋物線與坐標(biāo)軸分別交于點 是線段上方拋物線上的一個動點,

(1)求拋物線解析式:

(2)當(dāng)點運動到什么位置時,的面積最大?

查看答案和解析>>

同步練習(xí)冊答案