【題目】如圖,在△ABC中,AD是△ABC的高線,CE是△ABC的角平分線,它們相交于點(diǎn)P

1)若∠B40°,∠AEC75°,求證:ABBC;

2)若∠BAC90°,AP為△AECEC上中線,求∠B的度數(shù).

【答案】1)證明見(jiàn)解析;(230°.

【解析】

由三角形的內(nèi)角和可求出∠ECB35°,根據(jù)角平分線的定義可求∠ACB70°,進(jìn)而可求出∠BAC70°,從而結(jié)論可證;

2)由AP是△AECEC上的中線可知APPC,從而∠PAC=∠PCA,由CE是∠ACB的平分線,可證∠PAC=∠PCA=∠PCD,從而可求出∠PAC的度數(shù),然后求出∠BAD60°,繼而可求出∠B的值.

1)證明:∵∠B40°,∠AEC75°,

∴∠ECB=∠AEC﹣∠B35°,

CE平分∠ACB,

∴∠ACB2BCE70°,

BAC180°﹣∠B﹣∠ACB180°﹣40°﹣70°=70°,

∴∠BAC=∠BCA,

ABAC

2)∵∠BAC90°,AP是△AECEC上的中線,

APPC

∴∠PAC=∠PCA,

CE是∠ACB的平分線,

∴∠PAC=∠PCA=∠PCD,

∵∠ADC90°,

∴∠PAC=∠PCA=∠PCD90°÷330°,

∴∠BAD60°,

∵∠ADB90°,

∴∠B90°﹣60°=30°.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,在RtABC 中,AB=AC,DE是斜邊BC上兩點(diǎn),且∠DAE=45°,將△ABE繞點(diǎn)順時(shí)針旋轉(zhuǎn)90后,得到△ACF,連接DF.下列結(jié)論中:①∠DAF=45° ②△≌△ AD平分∠EDF ;正確的有______________(填序號(hào))

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,在平面直角坐標(biāo)系中,點(diǎn)A,B的坐標(biāo)分別為(1,0),(0,2),某拋物線的頂點(diǎn)坐標(biāo)為D(﹣1,1)且經(jīng)過(guò)點(diǎn)B,連接AB,直線AB與此拋物線的另一個(gè)交點(diǎn)為C,則SBCD:SABO=( )

A.8:1
B.6:1
C.5:1
D.4:1

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,旗桿AB的頂端B在夕陽(yáng)的余輝下落在一個(gè)斜坡上的點(diǎn)D處,某校數(shù)學(xué)課外興趣小組的同學(xué)正在測(cè)量旗桿的高度,在旗桿的底部A處測(cè)得點(diǎn)D的仰角為15°,AC=10米,又測(cè)得∠BDA=45°.已知斜坡CD的坡度為i=1: ,求旗桿AB的高度( ,結(jié)果精確到個(gè)位).

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖a是長(zhǎng)方形紙帶(提示:ADBC),將紙帶沿EF折疊成圖b,再沿GF折疊成圖c

1)若∠DEF20°,則圖b中∠EGB______,∠CFG______;

2)若∠DEF20°,則圖c中∠EFC______

3)若∠DEFα,把圖c中∠EFCα表示為______

4)若繼續(xù)按EF折疊成圖d,按此操作,最后一次折疊后恰好完全蓋住∠EFG,整個(gè)過(guò)程共折疊了9次,問(wèn)圖a中∠DEF的度數(shù)是多少.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖所示,以△ABC的邊AB為直徑作⊙O,點(diǎn)C在⊙O上,BD是⊙O的弦,∠A=∠CBD,過(guò)點(diǎn)C作CF⊥AB于點(diǎn)F,交BD于點(diǎn)G,過(guò)C作CE∥BD交AB的延長(zhǎng)線于點(diǎn)E.

(1)求證:CE是⊙O的切線;
(2)求證:CG=BG;
(3)若∠DBA=30°,CG=4,求BE的長(zhǎng).

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,過(guò)A點(diǎn)的一次函數(shù)的圖象與正比例函數(shù)y=2x的圖象相交于點(diǎn)B.

(1)求一次函數(shù)的解析式;

(2)判斷點(diǎn)C(4,-2)是否在該一次函數(shù)的圖象上,說(shuō)明理由

(3)若該一次函數(shù)的圖象與x軸交于D點(diǎn),求BOD的面積

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,在下列條件中,不能證明ABD≌△ACD的是( ).

A.BD=DC, AB=AC B.ADB=ADC,BD=DC

C.B=CBAD=CAD D. B=C,BD=DC

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,A市氣象站測(cè)得臺(tái)風(fēng)中心在A市正東方向300千米的B處,以10千米/時(shí)的速度向北偏西60°的BF方向移動(dòng),距臺(tái)風(fēng)中心200千米范圍內(nèi)是受臺(tái)風(fēng)影響的區(qū)域.

(1)A市是否會(huì)受到臺(tái)風(fēng)的影響?寫(xiě)出你的結(jié)論并給予說(shuō)明;

(2)如果A市受這次臺(tái)風(fēng)影響,那么受臺(tái)風(fēng)影響的時(shí)間有多長(zhǎng)?

查看答案和解析>>

同步練習(xí)冊(cè)答案