14、定義[p,q]為一次函數(shù)y=px+q的特征數(shù).若特征數(shù)是[2,k-2]的一次函數(shù)為正比例函數(shù),則k的值是
2
分析:根據(jù)新定義寫出一次函數(shù)的表達(dá)式;由正比例函數(shù)的定義確定k的值.
解答:解:根據(jù)題意,特征數(shù)是[2,k-2]的一次函數(shù)表達(dá)式為:y=2x+(k-2).
因?yàn)榇艘淮魏瘮?shù)為正比例函數(shù),所以k-2=0,
解得:k=2.
故填2.
點(diǎn)評:此題為閱讀理解題,結(jié)合考查正比例函數(shù)的定義,有新意,但難度不大.
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

15、宋朝時(shí),中國象棋就已經(jīng)風(fēng)靡于全國,中國象棋規(guī)定馬步為:“”形的對角線(即一次對角線為一步),現(xiàn)定義:在棋盤上從點(diǎn)A到點(diǎn)B,馬走的最少步稱為A與B的“馬步距離”,記作dA->B.在圖中畫出了中國象棋的一部分,上面標(biāo)有A,B,C,D,E共5個(gè)點(diǎn),則在dA->B,dA->C,dA->D,dA->E中小的是
dA->D
,最小是
2
步.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

對點(diǎn)(x,y)的一次操作變換記為P1(x,y),定義其變換法則如下:P1(x,y)=(x+y,x-y);且規(guī)定Pn(x,y)=P1(Pn-1(x,y))(n為大于1的整數(shù)).如P1(1,2)=(3,-1),P2(1,2)=P1(P1(1,2))=P1(3,-1)=(2,4),P3(1,2)=P1(P2(1,2))=P1(2,4)=(6,-2).則P2011(1,-1)=(  )
A、(0,21005B、(0,-21005C、(0,-21006D、(0,21006

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

(2012•井研縣模擬)對點(diǎn)(x,y)的一次操作變換記為P1(x,y),定義其變換法則如下:P1(x,y)=(x+y,x-y);且規(guī)定Pn(x,y)=P1[Pn-1(x,y)](n為大于1的整數(shù)).如P1(1,2)=(3,-1),P2(1,2)=P1[P1(1,2)]=P1(3,-1)=(2,4),P3(1,2)=P1[P2(1,2 )]=P1(2,4)=(6,-2).則P2012(1,-1)=( 。

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

定義一種對于三位數(shù)abc(a、b、c不完全相同)的“F運(yùn)算”:重排abc的三個(gè)數(shù)位上的數(shù)字,計(jì)算所得最大三位數(shù)和最小三位數(shù)的差(允許百位數(shù)字為零).例如abc=213時(shí),則

(1)求579經(jīng)過三次“F運(yùn)算”的結(jié)果(要求寫出三次“F運(yùn)算”的過程);
(2)假設(shè)abc中a>b>c,則abc經(jīng)過一次“F運(yùn)算”得
99(a-c)
99(a-c)
(用代數(shù)式表示);
(3)若任意一個(gè)三位數(shù)經(jīng)過若干次“F運(yùn)算”都會得到一個(gè)固定不變的值,那么任意一個(gè)四位數(shù)也經(jīng)過若干次這樣的“F運(yùn)算”是否會得到一個(gè)定值?若存在,請直接寫出這個(gè)定值;若不存在,請說明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

定義一種對于三位數(shù)
.
abc
(a、b、c不完全相同)的“F運(yùn)算”:重排
.
abc
的三個(gè)數(shù)位上的數(shù)字,計(jì)算所得最大三位數(shù)和最小三位數(shù)的差(允許百位數(shù)字為零).例如
.
abc
=213
時(shí),則

(1)579經(jīng)過三次“F運(yùn)算”得
495
495
;
(2)假設(shè)
.
abc
中a>b>c,則
.
abc
經(jīng)過一次“F運(yùn)算”得
99(a-c)
99(a-c)
(用代數(shù)式表示);
(3)猜想;任意一個(gè)三位數(shù)經(jīng)過若干次“F運(yùn)算’’都會得到一個(gè)定值
495
495
,請證明你的猜想.

查看答案和解析>>

同步練習(xí)冊答案