【題目】某社區(qū)為了加強社區(qū)居民對新型冠狀病毒肺炎防護知識的了解,通過微信群宣傳新型冠狀病毒肺炎的防護知識,并鼓勵社區(qū)居民在線參與《新型冠狀病毒防治與預(yù)防知識》作答(滿分100分),社區(qū)管理員隨機從甲、乙兩個小區(qū)各抽取20名人員的答卷成績,并對他們的成績(單位:分)進行數(shù)據(jù)統(tǒng)計、數(shù)據(jù)分析.
甲 | 85 | 80 | 95 | 85 | 90 | 95 | 100 | 65 | 75 | 85 |
90 | 90 | 70 | 100 | 90 | 80 | 80 | 90 | 98 | 75 | |
乙 | 80 | 60 | 80 | 85 | 95 | 65 | 90 | 85 | 100 | 80 |
95 | 75 | 80 | 80 | 70 | 100 | 95 | 75 | 90 | 90 |
表1分數(shù)統(tǒng)計表
成績 小區(qū) | 60≤x≤70 | 70<x≤80 | 80<x≤90 | 90<x≤100 |
甲 | 2 | 5 | a | b |
乙 | 3 | 7 | 5 | 5 |
表2:頻數(shù)分布表
統(tǒng)計量 小區(qū) | 平均數(shù) | 中位數(shù) | 眾數(shù) |
甲 | 85.75 | 87.5 | c |
乙 | 83.5 | d | 80 |
表3:統(tǒng)計量
(1)填空:a= ,b= ,c= ,d= ;
(2)甲小區(qū)共有800人參與答卷,請估計甲小區(qū)成績大于90分的人數(shù);
(3)對于此次抽樣調(diào)查中測試成績?yōu)?/span>60≤x≤70的居民,社區(qū)鼓勵他們重新學(xué)習(xí),然后從中隨機抽取兩名居民進行測試,求剛好抽到一個是甲小區(qū)居民,另一個是乙小區(qū)居民的概率.
【答案】(1)8,5,90,82.5;(2)200人.(3)
【解析】
(1)數(shù)出甲小區(qū)80<x≤90的數(shù)據(jù)數(shù)可求a;甲小區(qū)90<x≤100的數(shù)據(jù)數(shù)可求b;根據(jù)中位數(shù)的意義,將乙小區(qū)的抽查的20人成績排序找出處在中間位置的兩個數(shù)的平均數(shù)即可為中位數(shù),從甲小區(qū)成績中找出出現(xiàn)次數(shù)最多的數(shù)即為眾數(shù);
(2)抽查甲小區(qū)20人中成績高于90分的人數(shù)有5人,因此甲小區(qū)成績大于90分的人數(shù)占抽查人數(shù)為25%,進而可估計甲小區(qū)成績大于90分的人數(shù);
(3)列舉出所有等可能結(jié)果,利用概率公式求解可得.
(1)數(shù)出甲小區(qū)80<x≤90的數(shù)據(jù)數(shù)得到:,
數(shù)出甲小區(qū)90<x≤100的數(shù)據(jù)數(shù)得到:,
甲小區(qū)的出現(xiàn)次數(shù)最多的是90,因此眾數(shù)是90,即c=90,
中位數(shù)是從小到大排列后處在第10、11位兩個數(shù)的平均數(shù),
由乙小區(qū)中的數(shù)據(jù)可得處在第10、11位的兩個數(shù)的平均數(shù)為(80+85)÷2=82.5,
因此d=82.5.
故答案為:8,5,90,82.5;
(2)800×=200(人).
答:估計甲小區(qū)成績大于90分的人數(shù)是200人.
(3)設(shè)乙小區(qū)三個人編號為A、B、C,甲小區(qū)編號為D、E,
則所有可能組合為:AB、AC、AD、AE、BC、BD、BE、CD、CE、DE共10種,其中剛好抽到一個是甲小區(qū)居民,另一個是乙小區(qū)居民的情況數(shù)為6種,
∴剛好抽到一個是甲小區(qū)居民,另一個是乙小區(qū)居民的概率==.
科目:初中數(shù)學(xué) 來源: 題型:
【題目】某中學(xué)為豐富學(xué)生的校園生活,準備從體育用品商店一次性購買若干個籃球和足球(每個籃球的價格相同,每個足球的價格也相同).若購買個籃球和個足球共需元,購買個籃球和個足球共需元.
(1)購買一個籃球、一個足球各需多少元?
(2)根據(jù)該中學(xué)的實際情況,需從體育用品商店一次性購買籃球和足球共個.要求購買總金額不能超過元,則最多能購買多少個籃球?
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,拋物線y=﹣x2+2x+c+1交x軸于點A(a,0)和B(b,0),交y軸于點C,拋物線的頂點為D,下列四個命題:
①拋物線的對稱軸是直線x=1;
②若OC=OB,則c=2;
③若M(x0,y0)是x軸上方拋物線上一點,則(x0﹣a)(x0﹣b)<0;
④拋物線上有兩點P(x1,y1)和Q(x2,y2),若x1<1<x2,且x1+x2>2,則y1>y2.其中真命題個數(shù)是( 。
A.1B.2C.3D.4
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在菱形中,,點、分別為邊、上的點,且,連接、交于點,連接交于點,則下列結(jié)論:①;②;③;④;其中正確的結(jié)論個數(shù)是( )
A.1個B.2個C.3個D.4個
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,正方形ABCD中,AB=3,點E在邊CD上,且CD=3DE.將△ADE沿AE對折至△AFE,延長EF交邊BC于點G,連接AG,CF.下列結(jié)論:①點G是BC中點;②FG=FC;③.
其中正確的是
A. ①② B. ①③ C. ②③ D. ①②③
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】在平面直角坐標系中,拋物線:的對稱軸是軸,過點作一直線與拋物線相交于,兩點,過點作軸的垂線與直線相交于點.
(1)求拋物線的解析式;
(2)判斷點是否在直線上,并說明理由;
(3)若直線與拋物線有且只有一個公共點,且與拋物線的對稱軸不平行,則稱該直線與拋物線相切.過拋物線上的任意一點(除頂點外)作該拋物線的切線,分別交直線和直線于點,,求的值.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,已知,為的直徑,過點作弦垂直于直徑于,點恰好為的中點,連接,.
(1)求證:;
(2)若,求的半徑;
(3)在(2)的條件下,求陰影部分的面積.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com