【題目】如圖,拋物線y=﹣x2+2x+c+1交x軸于點(diǎn)A(a,0)和B(b,0),交y軸于點(diǎn)C,拋物線的頂點(diǎn)為D,下列四個(gè)命題:
①拋物線的對(duì)稱軸是直線x=1;
②若OC=OB,則c=2;
③若M(x0,y0)是x軸上方拋物線上一點(diǎn),則(x0﹣a)(x0﹣b)<0;
④拋物線上有兩點(diǎn)P(x1,y1)和Q(x2,y2),若x1<1<x2,且x1+x2>2,則y1>y2.其中真命題個(gè)數(shù)是( 。
A.1B.2C.3D.4
【答案】D
【解析】
根據(jù)二次函數(shù)的對(duì)稱軸、二次函數(shù)圖象上點(diǎn)的坐標(biāo)特征、二次函數(shù)的性質(zhì)判斷即可.
解:①拋物線的對(duì)稱軸是直線x=﹣=1,本說(shuō)法是真命題;
②當(dāng)x=0時(shí),y=c+1,即點(diǎn)C的坐標(biāo)為(0,c+1),
∴OC=1,
當(dāng)OB=OC=c+1時(shí),點(diǎn)B的坐標(biāo)為(c+1,0),
∴0=﹣(c+1)2+2(c+1)+c+1,
解得,c1=﹣1(舍去),c2=2,本說(shuō)法是真命題;
③拋物線y=﹣x2+2x+c+1交x軸于點(diǎn)A(a,0)和B(b,0),
∴a+b=2,ab=c+1,
∵M(x0,y0)是拋物線x軸上方一點(diǎn),
∴x02<2x0+c+1,
∴(x0﹣a)(x0﹣b)=x02﹣(a+b)x0+ab<2x0+c+1﹣2x0+c+1=0,本說(shuō)法是真命題;
④因?yàn)?/span>x1<1<x2,所以點(diǎn)P和Q在對(duì)稱軸兩側(cè),而x1+x2>2,則點(diǎn)Q比點(diǎn)P離對(duì)稱軸的距離要大,所以y1>y2,本說(shuō)法是真命題;
故選:D
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】某縣教育局為了豐富初中學(xué)生的大課間活動(dòng),要求各學(xué)校開展形式多樣的陽(yáng)光體育活動(dòng).某中學(xué)就“學(xué)生體育活動(dòng)興趣愛好”的問題,隨機(jī)調(diào)查了本校某班的學(xué)生,并根據(jù)調(diào)查結(jié)果繪制成如下的不完整的扇形統(tǒng)計(jì)圖和條形統(tǒng)計(jì)圖:
(1)在這次調(diào)查中,喜歡籃球項(xiàng)目的同學(xué)有 人,在扇形統(tǒng)計(jì)圖中,“乒乓球”的百分比為 .
(2)請(qǐng)將條形統(tǒng)計(jì)圖補(bǔ)充完整.
(3)如果學(xué)校有800名學(xué)生,估計(jì)全校學(xué)生中有多少人喜歡籃球項(xiàng)目.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,在中,,AB=10cm,BC=8cm,點(diǎn)P從點(diǎn)A沿AC向點(diǎn)C以1cm/s的速度運(yùn)動(dòng),同時(shí)點(diǎn)Q從點(diǎn)C沿CB向點(diǎn)B以2cm/s的速度運(yùn)動(dòng)(點(diǎn)Q運(yùn)動(dòng)到點(diǎn)B停止)。則四邊形PABQ的面積y()與運(yùn)動(dòng)時(shí)間x(s)之間的函數(shù)圖象為( )
A. B.
C. D.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,在Rt△DEF中,∠EFD=90°,∠DEF=30°,EF=3cm,邊長(zhǎng)為2cm的等邊△ABC的頂點(diǎn)C與點(diǎn)E重合,另一個(gè)頂點(diǎn)B(在點(diǎn)C的左側(cè))在射線FE上.將△ABC沿EF方向進(jìn)行平移,直到A、D、F在同一條直線上時(shí)停止,設(shè)△ABC在平移過(guò)程中與△DEF的重疊面積為ycm2,CE的長(zhǎng)為xcm,則下列圖象中,能表示y與x的函數(shù)關(guān)系的圖象大致是( 。
A.B.
C.D.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,在△ABC中,AC=AB,點(diǎn)E在BC上,以BE為直徑的⊙O經(jīng)過(guò)點(diǎn)A,點(diǎn)D是直徑BE下方半圓的中點(diǎn),AD交BC于點(diǎn)F,且∠B=2∠D.
(1)求∠B的度數(shù);
(2)求證:AC為⊙O的切線;
(3)連接DE,若OD=3,求的值.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】某社區(qū)為了加強(qiáng)社區(qū)居民對(duì)新型冠狀病毒肺炎防護(hù)知識(shí)的了解,通過(guò)微信群宣傳新型冠狀病毒肺炎的防護(hù)知識(shí),并鼓勵(lì)社區(qū)居民在線參與《新型冠狀病毒防治與預(yù)防知識(shí)》作答(滿分100分),社區(qū)管理員隨機(jī)從甲、乙兩個(gè)小區(qū)各抽取20名人員的答卷成績(jī),并對(duì)他們的成績(jī)(單位:分)進(jìn)行數(shù)據(jù)統(tǒng)計(jì)、數(shù)據(jù)分析.
甲 | 85 | 80 | 95 | 85 | 90 | 95 | 100 | 65 | 75 | 85 |
90 | 90 | 70 | 100 | 90 | 80 | 80 | 90 | 98 | 75 | |
乙 | 80 | 60 | 80 | 85 | 95 | 65 | 90 | 85 | 100 | 80 |
95 | 75 | 80 | 80 | 70 | 100 | 95 | 75 | 90 | 90 |
表1分?jǐn)?shù)統(tǒng)計(jì)表
成績(jī) 小區(qū) | 60≤x≤70 | 70<x≤80 | 80<x≤90 | 90<x≤100 |
甲 | 2 | 5 | a | b |
乙 | 3 | 7 | 5 | 5 |
表2:頻數(shù)分布表
統(tǒng)計(jì)量 小區(qū) | 平均數(shù) | 中位數(shù) | 眾數(shù) |
甲 | 85.75 | 87.5 | c |
乙 | 83.5 | d | 80 |
表3:統(tǒng)計(jì)量
(1)填空:a= ,b= ,c= ,d= ;
(2)甲小區(qū)共有800人參與答卷,請(qǐng)估計(jì)甲小區(qū)成績(jī)大于90分的人數(shù);
(3)對(duì)于此次抽樣調(diào)查中測(cè)試成績(jī)?yōu)?/span>60≤x≤70的居民,社區(qū)鼓勵(lì)他們重新學(xué)習(xí),然后從中隨機(jī)抽取兩名居民進(jìn)行測(cè)試,求剛好抽到一個(gè)是甲小區(qū)居民,另一個(gè)是乙小區(qū)居民的概率.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,一次函數(shù)的圖象與反比例函數(shù)的圖象交于點(diǎn),與軸交于點(diǎn).
(1)求一次函數(shù)的解析式和點(diǎn)的坐標(biāo);
(2)在反比例函數(shù)的圖象上取一點(diǎn),直線交軸于點(diǎn),若點(diǎn)恰為線段的中點(diǎn),求點(diǎn)的坐標(biāo).
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,已知,,分別是射線,上的點(diǎn).
(1)尺規(guī)作圖:在的內(nèi)部確定一點(diǎn),使得且;(保留作圖痕跡,不寫作法)
(2)在(1)中,連接,用無(wú)刻度直尺在線段上確定一點(diǎn),使得,并證明.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖是拋物線y=ax2+bx+c(a≠0)的部分圖象,其頂點(diǎn)坐標(biāo)為(1,n),且與x軸的一個(gè)交點(diǎn)在點(diǎn)(3,0)和(4,0)之間,則下列結(jié)論:①4a﹣2b+c>0;②3a+b>0;③b2=4a(c﹣n);④一元二次方程ax2+bx+c=n﹣1有兩個(gè)互異實(shí)根.其中正確結(jié)論的個(gè)數(shù)是( 。
A.1個(gè)B.2個(gè)C.3個(gè)D.4個(gè)
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com