如圖,在直角梯形ABCD中,AD∥BC,∠ABC=90°.點(diǎn)E為底AD上一點(diǎn),將△ABE沿直線BE折疊,點(diǎn)A落在梯形對(duì)角線BD上的G處,EG的延長(zhǎng)線交直線BC于點(diǎn)F.
(1)點(diǎn)E可以是AD的中點(diǎn)嗎?為什么?
(2)求證:△ABG∽△BFE;
(3)設(shè)AD=a,AB=b,BC=c
①當(dāng)四邊形EFCD為平行四邊形時(shí),求a,b,c應(yīng)滿足的關(guān)系;
②在①的條件下,當(dāng)b=2時(shí),a的值是唯一的,求∠C的度數(shù).
考點(diǎn):
相似形綜合題;根的判別式;根與系數(shù)的關(guān)系;平行四邊形的性質(zhì);直角梯形;翻折變換(折疊問(wèn)題);相似三角形的判定與性質(zhì)。
專題:
代數(shù)幾何綜合題。
分析:
(1)根據(jù)折疊的性質(zhì)可得AE=GE,∠EGB=∠EAB=90°,再根據(jù)直角三角形斜邊大于直角邊可得DE>EG,從而判斷點(diǎn)E不可能是AD的中點(diǎn);
(2)方法一:根據(jù)兩直線平行,內(nèi)錯(cuò)角相等可得∠AEB=∠EBF,再根據(jù)折疊的性質(zhì)可以判定出∠AEB=∠BEG,然后得到∠EBF=∠BEF,從而判斷出△FEB為等腰三角形,再根據(jù)等角的余角相等求出∠ABG=∠EFB,然后根據(jù)等腰三角形的兩個(gè)底角相等求出∠BAG=∠FBE,然后根據(jù)兩角對(duì)應(yīng)相等,兩三角形相似即可證明;
方法二:與方法一相同求出∠ABG=∠EFB后,根據(jù)等腰三角形的兩腰相等,然后根據(jù)兩邊對(duì)應(yīng)成比例且夾角相等判斷出兩個(gè)三角形相似;
(3)①方法一:根據(jù)勾股定理求出BD的長(zhǎng)度,再利用兩角對(duì)應(yīng)相等,兩三角形相似得到△ABD和△DCB相似,然后根據(jù)相似三角形對(duì)應(yīng)邊成比例列式計(jì)算即可得解;
方法二:過(guò)點(diǎn)D作DH⊥BC于點(diǎn)H,然后求出∠C=∠ABD,再根據(jù)直角相等,判斷出△ABD和△HCD相似,根據(jù)相似三角形對(duì)應(yīng)邊成比例列式計(jì)算即可得解;
方法三:先求出△ABD和△GFB相似,根據(jù)相似三角形對(duì)應(yīng)邊成比例列式求出BF的長(zhǎng)度,再求出△EDG和△FBG相似,根據(jù)平行四邊形的對(duì)邊相等表示出ED,再表示出DG,然后根據(jù)相似三角形對(duì)應(yīng)邊成比例列式整理即可得證;
②方法一:把b=2代入a、b、c的關(guān)系式,利用求根公式求出a的兩個(gè)根,再根據(jù)a是唯一的,可以判定△=c2﹣16=0,然后求出c=4,再代入根求出a=2,然后判斷出H是BC的中點(diǎn),利用解直角三角形求出∠C=45°;
方法二:把b=2代入a、b、c的關(guān)系式,利用根與系數(shù)的關(guān)系判斷出關(guān)于a的方程的解是正數(shù),再根據(jù)a是唯一的,可以判定△=c2﹣16=0,然后求出c=4,再代入根與系數(shù)的關(guān)系求出a=2,然后判斷出H是BC的中點(diǎn),利用解直角三角形求出∠C=45°.
解答:
解:(1)不是.…1分
據(jù)題意得:AE=GE,∠EGB=∠EAB=90°,
∴Rt△EGD中,GE<ED,
∴AE<ED,
故,點(diǎn)E不可以是AD的中點(diǎn);…2分
(注:大致說(shuō)出意思即可;反證法敘述也可)
(2)方法一:
證明:∵AD∥BC,
∴∠AEB=∠EBF,
∵△EAB≌△EGB,
∴∠AEB=∠BEG,
∴∠EBF=∠BEF,
∴FE=FB,
∴△FEB為等腰三角形.
∵∠ABG+∠GBF=90°,∠GBF+∠EFB=90°,
∴∠ABG=∠EFB,…4分
在等腰△ABG和△FEB中,∠BAG=(180°﹣∠ABG)÷2,
∠FBE=(180°﹣∠EFB)÷2,
∴∠BAG=∠FBE,…5分
∴△ABG∽△BFE,(注:證一對(duì)角對(duì)應(yīng)等評(píng)2分,第二對(duì)角對(duì)應(yīng)等評(píng)1分,該小問(wèn)3分,若只證得△FEB為等腰三角形,評(píng)1分.)
方法二:∠ABG=∠EFB(見方法一),…4分
證得兩邊對(duì)應(yīng)成比例:,…5分
由此可得出結(jié)論.
(注:兩邊對(duì)應(yīng)成比例,夾角等證得相似,若只證得△FEB為等腰三角形,評(píng)1分.)
(3)①方法一:∵四邊形EFCD為平行四邊形,
∴EF∥DC,
證明兩個(gè)角相等,得△ABD∽△DCB,…7分
∴,
即,
∴a2+b2=ac;…8分
方法二:如圖,過(guò)點(diǎn)D作DH⊥BC,
∵四邊形EFCD為平行四邊形
∴EF∥DC,
∴∠C=∠EFB,
∵△ABG∽△BFE,
∴∠EFB=∠GBA,
∴∠C=∠ABG,
∵∠DAB=∠DHC=90°,
∴△ABD∽△HCD,…7分
∴,
∴,
∴a2+b2=ac;…8分(注:或利用tan∠C=tan∠ABD,對(duì)應(yīng)評(píng)分)
方法三:證明△ABD∽△GFB,則有,
∴,則有BF=,…6分
∵四邊形EFCD為平行四邊形,
∴FC=ED=c﹣,
∵ED∥BC,
∴△EDG∽△FBG,
∴,
∴,
∴a2+b2=ac;…8分
②方法一:解關(guān)于a的一元二次方程a2﹣ac+22=0,得:
a1=,a2=…9分
由題意,△=0,即c2﹣16=0,
∵c>0,
∴c=4,
∴a=2…10分
∴H為BC的中點(diǎn),且ABHD為正方形,DH=HC,∠C=45°;…11分
方法二:設(shè)關(guān)于a的一元二次方程a2﹣ac+22=0兩根為a1,a2,
a1+a2=c>0,a1•a2=4>0,
∴a1>0,a2>0,…9分
由題意,△=0,即c2﹣16=0,
∵c>0,
∴c=4,
∴a=2,…10分
∴H為BC的中點(diǎn),且ABHD為正方形,DH=HC,∠C=45°.…11分
點(diǎn)評(píng):
本題綜合考查了相似三角形的性質(zhì)與判定,根的判別式,根與系數(shù)的關(guān)系,平行四邊形的性質(zhì),折疊的性質(zhì),綜合性較強(qiáng),難度較大,需仔細(xì)分析,認(rèn)真研究,結(jié)合圖形理清題目邊長(zhǎng)之間的關(guān)系,角度之間的關(guān)系是解題的關(guān)鍵,本題對(duì)同學(xué)們的能力要求較高.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來(lái)源: 題型:
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com