【題目】如圖,ABC內(nèi)接于⊙O,AB=AC,∠BAC=36°,過點A作ADBC,與ABC的平分線交于點D,BD與AC交于點E,與O交于點F.

(1)求DAF的度數(shù);

(2)求證:AE2=EFED;

【答案】(1)36°;(2)證明見解析

【解析】

(1)求出∠ABC、ABD、CBD的度數(shù),求出∠D度數(shù),根據(jù)三角形內(nèi)角和定理求出∠BAF和∠BAD度數(shù),即可求出答案;

(2)求出△AEF∽△DEA,根據(jù)相似三角形的性質(zhì)得出即可.

(1)ADBC,

∴∠D=CBD,

AB=AC,BAC=36°,

∴∠ABC=ACB=×(180°﹣BAC)=72°,

∴∠AFB=ACB=72°,

BD平分∠ABC,

∴∠ABD=CBD=ABC=×72°=36°,

∴∠D=CBD=36°,

∴∠BAD=180°﹣D﹣ABD=180°﹣36°﹣36°=108°,

BAF=180°﹣ABF﹣AFB=180°﹣36°﹣72°=72°,

∴∠DAF=DAB﹣FAB=108°﹣72°=36°;

(2)∵∠CBD=36°,FAC=CBD,

∴∠FAC=36°=D,

∵∠AED=AEF,

∴△AEF∽△DEA,

,

AE2=EF×ED.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,□ABCD的對角線交于點O,點E在邊BC的延長線上,且OE=OB,連接DE

(1)求證:BDE是直角三角形;

(2)如果OECD,試判斷BDEDCE是否相似,并說明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】一枚均勻的正方體骰子,六個面分別標(biāo)有數(shù)字:1,2,3,4,5,6.如果用小剛拋擲正方體骰子朝上的數(shù)字x,小強拋擲正方體骰子朝上的數(shù)字y來確定點P(x,y),那么他們各拋擲一次所確定的點P落在已知直線y=﹣2x+7圖象上的概率是多少?

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖是拋物線形拱橋,當(dāng)拱頂離水面2m時,水面寬4m,則水面下降1m時,水面寬度增加_____m.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】2019年是中華人民共和國成立70周年,某校將開展愛我中華,了解歷史為主題的知識競賽,八年級某老師為了解所任教的甲,乙兩班學(xué)生相關(guān)知識的掌握情況,對兩個班的學(xué)生進行了中國歷史知識檢測,滿分為100.現(xiàn)從兩個班分別隨機抽取了20名學(xué)生的檢測成績進行整理、描述和分析,下面給出了部分信息:(成績得分用x表示,共分為五組,A:0≤x80,B:80≤x85,C:85≤x90,D:90≤x95,E:95≤x≤100)

甲班20名學(xué)生的成績?yōu)?/span>:

82,8596,73,91,99,8791,86,91

87, 94,89, 9696,91100,9394, 99

乙班20名學(xué)生的成績在D組中的數(shù)據(jù)是:91,92,9292,92,93,94

甲,乙兩班抽取的學(xué)生成績數(shù)據(jù)統(tǒng)計表:

根據(jù)以上信息,解答下列問題:

(1)請直接寫出上述統(tǒng)計表中a,b的值:a= ,b= ;

(2)若甲,乙兩班總?cè)藬?shù)為120名,且都參加了此次知識檢測,若規(guī)定成績得分x≥95為優(yōu)秀,請估計此次檢測成績優(yōu)秀的學(xué)生人數(shù)是多少名?

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】(1)如圖①,直線AB//CD,試確定∠B,BPC,C之間的數(shù)量關(guān)系:

(2)如圖②,直線AB//CD.ABP與∠DCP的平分線相交于點P1,請確定∠P與∠P1的數(shù)量關(guān)系;

(3)如圖③,若∠A=(0180°,且≠135°),點BC分別在∠A的兩邊上,分別過點B和點C作直線.使得,分別與AB,AC的夾角為.交于點O,請直接寫出∠BOC的度數(shù).

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,己知,A(0, 4),B (t,0)分別在y,x軸上,連接AB,AB為直角邊分別作等腰RtABD和等腰RtABC.直線BCy軸于點E. G(-2,3)H(-2,1)在第二象限內(nèi).

(1)當(dāng)t =-3時,求點D的坐標(biāo).

(2)若點G、H位于直線AB的異側(cè),確定t的取值范圍.

(3)①當(dāng)t取何值時,ABEACE的面積相等.

②在①的條件下,在x軸上是否存在點P,使PCB為等腰三角形?若存在,請直接寫出點P的坐標(biāo);若不存在,說明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖所示,在平面直角坐標(biāo)系中,已知點A(-4,0)、B(0,3),對△AOB連續(xù)作旋轉(zhuǎn)變換可以依次得到三角形(1)、(2)、(3)、(4)、…

請你仔細(xì)觀察圖形,并解決以下問題:

(1)第(2)個三角形的直角頂點坐標(biāo)是 ;

(2)第(5)個三角形的直角頂點坐標(biāo)是 ;

(3)第(2018)個三角形的直角頂點坐標(biāo)是 .

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,小華剪了兩條寬均為的紙條,交叉疊放在一起,且它們的交角為,則它們重疊部分的面積為(

A. B. C. D.

查看答案和解析>>

同步練習(xí)冊答案