【題目】如圖,點(diǎn)是反比例函數(shù)的圖象上的一點(diǎn),過點(diǎn)軸,垂足為.點(diǎn)軸正半軸上的一點(diǎn),連接、,延長軸于點(diǎn).若,且的面積為18,則的值是(

A.6B.-6C.12D.-12

【答案】D

【解析】

設(shè)點(diǎn)A坐標(biāo)為(x,),根據(jù)反比例函數(shù)圖象在第二象限可知OB=-x,AB=,根據(jù)△ABD的面積可得出BD=,由ACCD=12可得ACAD=13,根據(jù)平行線分線段成比例定理可得OBBD=ACAD=13,即可求出k值.

設(shè)點(diǎn)A坐標(biāo)為(x,),

∵反比例函數(shù)圖象在第二象限,

OB=-xAB=,

∵△ABD的面積為18

BD·AB=18,即BD·=18

BD=,

ACCD=12,

ACAD=13,

ABx軸,

OC//AB

OBBD=ACAD=13,即-x=13,

解得:k=-12

故選:D

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

【題目】某蔬菜專業(yè)戶試種植了一種緊俏蔬菜(都能賣出),其中每千克的成本9/千克的基礎(chǔ)上,還有一些上。舾觾r(jià)(元/)與需求量(千克)成反比,比例系數(shù)為30.市場連續(xù)四天調(diào)查發(fā)現(xiàn),蔬菜售價(jià)(元/)與市場需求量有如下關(guān)系:

需求量

50

40

30

20

蔬菜售價(jià)(元/

10

15

20

25

1)直接寫出每千克的成本與需求量的關(guān)系式_________;

2)求的關(guān)系式;

3)當(dāng)某天的利潤率達(dá)到時(shí),求這天的需求量;

4)求需求量是多少千克時(shí),利潤達(dá)到最大值,最大值是多少?

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】甲、乙兩家綠化養(yǎng)護(hù)公司各自推出了校園綠化養(yǎng)護(hù)服務(wù)的收費(fèi)方案.

甲公司方案:每月的養(yǎng)護(hù)費(fèi)由兩部分組成:固定費(fèi)用400元和服務(wù)費(fèi)用5/平方米;

乙公司方案:綠化面積不超過1000平方米時(shí),每月收取費(fèi)用5500元;綠化面積超過1000平方米時(shí),每月在收取5500元的基礎(chǔ)上,超過部分每平方米收取4元.

1)求甲公司養(yǎng)護(hù)費(fèi)用y(元)與綠化面積x(平方米)的函數(shù)解析式(不要求寫出自變量的范圍);

2)選擇哪家公司的服務(wù),每月的綠化養(yǎng)護(hù)費(fèi)用較少.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在平面直角坐標(biāo)系中,直線分別與軸、軸相交于點(diǎn)B、C,經(jīng)過點(diǎn)B、C的拋物線軸的另一個(gè)交點(diǎn)為A

1)求出拋物線表達(dá)式,并求出點(diǎn)A坐標(biāo);

2)已知點(diǎn)D在拋物線上,且橫坐標(biāo)為3,求出△BCD的面積;

3)點(diǎn)P是直線BC上方的拋物線上一動點(diǎn),過點(diǎn)PPQ垂直于軸,垂足為Q.是否存在點(diǎn)P,使得以點(diǎn)A、PQ為頂點(diǎn)的三角形與△BOC相似?若存在,請求出點(diǎn)P的坐標(biāo);若不存在,請說明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】為了讓學(xué)生掌握知識更加牢固,某校九年級物理組老師們將物理實(shí)驗(yàn)的教學(xué)方式由之前的理論教學(xué)改進(jìn)為理論+實(shí)踐,一段時(shí)間后,從九年級隨機(jī)抽取15名學(xué)生,對他們在教學(xué)方式改進(jìn)前后的物理實(shí)驗(yàn)成績(百分制)進(jìn)行整理、描述和分析(成績用表示,共分成4組:A,B,CD),下面給出部分信息:

教學(xué)方式改進(jìn)前抽取的學(xué)生的成績在組中的數(shù)據(jù)為:8083,8587,89

教學(xué)方式改進(jìn)后抽取的學(xué)生成績?yōu)椋?/span>72,70,76,100,98,100,8286,95,90100,86,8493,88

教學(xué)方式改進(jìn)前抽取的學(xué)生成績頻數(shù)分布直方圖

教學(xué)方式改進(jìn)前后抽取的學(xué)生成績對比統(tǒng)計(jì)表

統(tǒng)計(jì)量

改進(jìn)前

改進(jìn)后

平均數(shù)

88

88

中位數(shù)

眾數(shù)

98

根據(jù)以上信息,解答下列問題:

1)直接寫出上述圖表中的值;

2)根據(jù)以上數(shù)據(jù),你認(rèn)為該校九年級學(xué)生的物理實(shí)驗(yàn)成績在教學(xué)方式改進(jìn)前好,還是改進(jìn)后好?請說明理由(一條理由即可);

3)若該校九年級有300名學(xué)生,規(guī)定物理實(shí)驗(yàn)成績在90分及以上為優(yōu)秀,估計(jì)教學(xué)方式改進(jìn)后成績?yōu)閮?yōu)秀的學(xué)生人數(shù)是多少?

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】基礎(chǔ)探究:如圖1,在,中,,點(diǎn)都在邊上,且,連接、

1)求證:

2)如圖2,以為對角線的四邊形中,,,將沿折疊,得到,點(diǎn)的對應(yīng)點(diǎn)恰好落在邊上,若,則四邊形的面積為________

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】關(guān)于x的一元二次方程x2+3x+m-1=0的兩個(gè)實(shí)數(shù)根分別為x1,x2

(1)求m的取值范圍.

(2)若2(x1+x2)+ x1x2+10=0.求m的值.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,一架無人機(jī)航拍過程中在處測得地面上,兩個(gè)目標(biāo)點(diǎn)的俯角分別為.若,兩個(gè)目標(biāo)點(diǎn)之間的距離是100米,則此時(shí)無人機(jī)與目標(biāo)點(diǎn)之間的距離(即的長)為(

A.100B.C.50D.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】已知二次函數(shù)是常數(shù),)圖象的對稱軸是直線,其圖象的一部分如圖所示,下列說法中①;②;③當(dāng)時(shí),;④;⑤.正確的結(jié)論有(

A.①②④B.②③④C.①③⑤D.①②③④⑤

查看答案和解析>>

同步練習(xí)冊答案