作業(yè)寶已知拋物線數(shù)學(xué)公式與x軸交于A、B,與y軸交于點(diǎn)C,連結(jié)AC、BC,D是線段OB上一動(dòng)點(diǎn),以CD為一邊向右側(cè)作正方形CDEF,連結(jié)BF.若S△OBC=8,AC=BC
(1)求拋物線的解析式;
(2)求證:BF⊥AB;
(3)求∠FBE;
(4)當(dāng)D點(diǎn)沿x軸正方向移動(dòng)到點(diǎn)B時(shí),點(diǎn)E也隨著運(yùn)動(dòng),則點(diǎn)E所走過的路線長(zhǎng)是______.

解:(1)如圖,∵AC=BC,
∴該拋物線的對(duì)稱軸是y軸,則b=0.
∴C(0,c),B(,0).
∵S△OBC=8,
OC•OB=×c×=8,解得c=4(c>0).
故該拋物線的解析式為y=-x2+4;

(2)證明:由(1)得到拋物線的解析式為y=-x2+4;
令y=0,得x1=4,x2=-4,
∴A(-4,0),B(4,0),
∴OA=OB=OC,
∴△ABC是等腰直角三角形;
如圖,又∵四邊形CDEF是正方形,
∴AC=BC,CD=CF,∠ACD=∠BCF,
在△ACD和△BCF中
∴△ACD≌△BCF(SAS),
∴∠CBF=∠CAD=45°,
∴∠ABF=∠ABC+∠CBF=90°,
∴BF⊥AB;

(3)如圖,連接BE,過點(diǎn)E作EM⊥x軸于點(diǎn)M.
易證△ODC≌△DME,則DM=OC=4,OD=EM.
∵OD=OB-BD=4-BD=DM-BD=BM,
∴BM=EM.
∵∠EMB=90°,
∴∠MBE=∠MEB=45°;
由(2)知,BF⊥AB,
∴∠FBE=∠FBM-∠MBE=45°;

(4)由(3)知,點(diǎn)E在定直線上,當(dāng)點(diǎn)D沿x軸正方向移動(dòng)到點(diǎn)B時(shí),點(diǎn)E所走過的路程長(zhǎng)等于BC=4.故答案是:4
分析:(1)根據(jù)拋物線的對(duì)稱性得到拋物線的對(duì)稱軸為y軸,則b=0;然后利用方程與二次函數(shù)的關(guān)系求得點(diǎn)B、C的坐標(biāo),由S△OBC=8可以求得c的值;
(2)由拋物線y=-x2+4交x軸于點(diǎn)A、B,當(dāng)x=0,求出圖象與y軸的交點(diǎn)坐標(biāo),以及y=0,求出圖象與x軸的交點(diǎn)坐標(biāo),即可得出三角形的形狀;首先證明△ACD≌△BCF,利用三角形的全等,得出∠ABF=∠ABC+∠CBF=90°,即可得出答案;
(3)如圖,連接BE,過點(diǎn)E作EM⊥x軸于點(diǎn)M.易證△ODC≌△DME,則DM=OC=4,OD=EM.易求BM=EM.則∠MBE=∠MEB=45°;由(2)知,BF⊥AB,故
∠FBE=∠FBM-∠MBE=45°;
(4)由(3)知,點(diǎn)E在定直線上,當(dāng)點(diǎn)D沿x軸正方向移動(dòng)到點(diǎn)B時(shí),點(diǎn)E所走過的路程長(zhǎng)等于BC的長(zhǎng)度.
點(diǎn)評(píng):本題著重考查了待定系數(shù)法求二次函數(shù)解析式、全等三角形的判定與性質(zhì)、正方形和等腰直角三角形的性質(zhì),綜合性強(qiáng),考查學(xué)生數(shù)形結(jié)合的數(shù)學(xué)思想方法.(4)中弄清點(diǎn)E所走過的路程是解題的關(guān)鍵.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

精英家教網(wǎng)如圖,已知拋物線與x軸交于A(-1,0)、E(3,0)兩點(diǎn),與y軸交于點(diǎn)B(0,3).
(1)求拋物線的解析式;
(2)設(shè)拋物線頂點(diǎn)為D,求四邊形AEDB的面積;
(3)△AOB與△DBE是否相似?如果相似,請(qǐng)給以證明;如果不相似,請(qǐng)說明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

精英家教網(wǎng)如圖,已知拋物線與x軸交于點(diǎn)A(-2,0),B(4,0),與y軸交于點(diǎn)C(0,8).
(1)求拋物線的解析式及其頂點(diǎn)D的坐標(biāo);
(2)設(shè)直線CD交x軸于點(diǎn)E.在線段OB的垂直平分線上是否存在點(diǎn)P,使得點(diǎn)P到直線CD的距離等于點(diǎn)P到原點(diǎn)O的距離?如果存在,求出點(diǎn)P的坐標(biāo);如果不存在,請(qǐng)說明理由;
(3)過點(diǎn)B作x軸的垂線,交直線CD于點(diǎn)F,將拋物線沿其對(duì)稱軸平移,使拋物線與線段EF總有公共點(diǎn).試探究:拋物線向上最多可平移多少個(gè)單位長(zhǎng)度?向下最多可平移多少個(gè)單位長(zhǎng)度?

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

已知拋物線與x軸交于A(-3,0),B(1,0)兩點(diǎn),與y軸交于點(diǎn)C(0,-3),拋物線頂點(diǎn)為D,連接AD,AC,CD.
(1)求該拋物線的解析式;
(2)△ACD與△COB是否相似?如果相似,請(qǐng)給以證明;如果不相似,請(qǐng)說明理由;
(3)拋物線的對(duì)稱軸與線段AC交于點(diǎn)E,求△CED的面積.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

如圖,已知拋物線與x軸交于A(-1,0)、B(4,0)兩點(diǎn),與y軸交于點(diǎn)C(0,3).
(1)求拋物線的解析式;
(2)點(diǎn)P在x軸下方的拋物線上,且△PAB的面積等于△ABC的面積,求點(diǎn)P的坐標(biāo);
(3)點(diǎn)Q是直線BC上的一個(gè)動(dòng)點(diǎn),若△QOB為等腰三角形,請(qǐng)寫出此時(shí)點(diǎn)Q的坐標(biāo).

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

(2012•岳陽一模)如圖,已知拋物線與x軸交于A(-4,0)和B(1,0)兩點(diǎn),與y軸交于C(0,-2)點(diǎn).
(1)求此拋物線的解析式;
(2)設(shè)G是線段BC上的動(dòng)點(diǎn),作GH∥AC交AB于H,連接CH,當(dāng)△BGH的面積是△CGH面積的3倍時(shí),求H點(diǎn)的坐標(biāo);
(3)若M為拋物線上A、C兩點(diǎn)間的一個(gè)動(dòng)點(diǎn),過M作y軸的平行線,交AC于N,當(dāng)M點(diǎn)運(yùn)動(dòng)到什么位置時(shí),線段MN的值最大,并求此時(shí)M點(diǎn)的坐標(biāo).

查看答案和解析>>

同步練習(xí)冊(cè)答案