【題目】如圖所示,在正方形ABCD中,EBC的中點(diǎn),FCD上一點(diǎn),AEEF,下列結(jié)論:BAE30°;ABE∽△AEFCD3CF;SABE4SECF.其中正確的有_____(填序號(hào)).

【答案】②④

【解析】

由正方形的性質(zhì)和三角函數(shù)得出∠BAE30°,①不正確;由題中條件可得△CEF∽△BAE,進(jìn)而得出對(duì)應(yīng)線段成比例,得出②正確,CF=13FD,③不正確;進(jìn)而又可得出△ABE∽△AEF,得出④正確,即可得出題中結(jié)論.

解:tan∠BAE,

∴∠BAE≠30°,故錯(cuò)誤;

四邊形ABCD是正方形,

∴∠BC90°ABBCCD

AEEF,

∴∠AEFB90°

∴∠BAE+∠AEB90°AEB+FEC90°,

∴∠BAECEF

∴△BAE∽△CEF,

,

BECEBC,

4,

SABE4SECF,故正確;

CFECCD

CD4CF,

錯(cuò)誤;

設(shè)CFa,則BECE2a,ABCDAD4a,DF3a

AE2a,EFa,AF5a,

,,

∴△ABE∽△AEF,故正確.

∴②正確.

故答案為:②④

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,已知 兩點(diǎn)的坐標(biāo)分別為,點(diǎn)分別是直線x軸上的動(dòng)點(diǎn),,點(diǎn)是線段的中點(diǎn),連接軸于點(diǎn);當(dāng)⊿面積取得最小值時(shí),的值是(

A.B.C.D.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】2009517日至21日,甲型H1N1流感在日本迅速蔓延,每天的新增病例和累計(jì)確診病例人數(shù)如圖所示.

1)在517日至521日這5天中,日本平均每天新增加甲型H1N1流感確診病例多少人?如果接下來(lái)的5天中,繼續(xù)按這個(gè)平均數(shù)增加,那么到526日,日本甲型H1N1流感累計(jì)確診病例將會(huì)達(dá)到多少人?

2)甲型H1N1流感病毒的傳染性極強(qiáng),某地因1人患了甲型H1N1流感沒(méi)有及時(shí)隔離治療,經(jīng)過(guò)兩天傳染后共有9人患了甲型H1N1流感,每天傳染中平均一個(gè)人傳染了幾個(gè)人?如果按照這個(gè)傳染速度,再經(jīng)過(guò)5天的傳染后,這個(gè)地區(qū)一共將會(huì)有多少人患甲型H1N1流感?

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】為了迎接疫情徹底結(jié)束后的購(gòu)物高峰.某運(yùn)動(dòng)品牌專賣店準(zhǔn)備購(gòu)進(jìn)甲、乙兩種運(yùn)動(dòng)鞋.其中甲、乙兩種運(yùn)動(dòng)鞋的進(jìn)價(jià)和售價(jià)如下表

運(yùn)動(dòng)鞋價(jià)格

進(jìn)價(jià)(/)

售價(jià)(/)

已知元購(gòu)進(jìn)甲種運(yùn)動(dòng)鞋的數(shù)量與用元購(gòu)進(jìn)乙種運(yùn)動(dòng)鞋的數(shù)量相同.

的值;

要使購(gòu)進(jìn)的甲、乙兩種運(yùn)動(dòng)鞋共雙的總利潤(rùn)(利潤(rùn)售價(jià)進(jìn)價(jià))不少于元,且甲種運(yùn)動(dòng)鞋的數(shù)量不超過(guò)雙,問(wèn)該專賣店共有幾種進(jìn)貨方案;

的條件下,專賣店準(zhǔn)備對(duì)甲種運(yùn)動(dòng)鞋進(jìn)行優(yōu)惠促銷活動(dòng),決定對(duì)甲種運(yùn)動(dòng)鞋每雙優(yōu)惠元出售,乙種運(yùn)動(dòng)鞋價(jià)格不變.那么該專賣店要獲得最大利潤(rùn)應(yīng)如何進(jìn)貨?

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】扶貧工作小組對(duì)果農(nóng)進(jìn)行精準(zhǔn)扶貧,幫助果農(nóng)將一種有機(jī)生態(tài)水果拓寬了市場(chǎng).與去年相比,今年這種水果的產(chǎn)量增加了1000千克,每千克的平均批發(fā)價(jià)比去年降低了1元,批發(fā)銷售總額比去年增加了

1)已知去年這種水果批發(fā)銷售總額為10萬(wàn)元,求這種水果今年每千克的平均批發(fā)價(jià)是多少元?

2)某水果店從果農(nóng)處直接批發(fā),專營(yíng)這種水果.調(diào)查發(fā)現(xiàn),若每千克的平均銷售價(jià)為41元,則每天可售出300千克;若每千克的平均銷售價(jià)每降低3元,每天可多賣出180千克,設(shè)水果店一天的利潤(rùn)為元,當(dāng)每千克的平均銷售價(jià)為多少元時(shí),該水果店一天的利潤(rùn)最大,最大利潤(rùn)是多少?(利潤(rùn)計(jì)算時(shí),其它費(fèi)用忽略不計(jì).)

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】定義:由兩條與x軸有著相同的交點(diǎn),并且開(kāi)口方向相同的拋物線所圍成的封閉曲線稱為月牙線.如圖,拋物線C1與拋物線C2組成一個(gè)開(kāi)口向上的月牙線,拋物線C1與拋物線C2x軸有相同的交點(diǎn)M,N(點(diǎn)M在點(diǎn)N的左側(cè)),與y軸的交點(diǎn)分別為A,B且點(diǎn)A的坐標(biāo)為(0,﹣3),拋物線C2的解析式為ymx2+4mx12m,(m0).

1)請(qǐng)你根據(jù)月牙線的定義,設(shè)計(jì)一個(gè)開(kāi)口向下.月牙線,直接寫出兩條拋物線的解析式;

2)求M,N兩點(diǎn)的坐標(biāo);

3)在第三象限內(nèi)的拋物線C1上是否存在一點(diǎn)P,使得PAM的面積最大?若存在,求出PAM的面積的最大值;若不存在,說(shuō)明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,在△ABC中,EAC邊上的一點(diǎn),且AEAB,∠BAC2CBE,以AB為直徑作⊙OAC于點(diǎn)D,交BE于點(diǎn)F

1)求證:EFBF;

2)求證:BC是⊙O的切線.

3)若AB4,BC3,求DE的長(zhǎng),

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖所示,在邊長(zhǎng)為6的正方形ABCD外以CD為底邊作等腰直角CDE,連接BE,交CD于點(diǎn)F,則CF=___________

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,拋物線與直線AB交于點(diǎn)A(10),B(4).點(diǎn)D是拋物線A,B兩點(diǎn)間部分上的一個(gè)動(dòng)點(diǎn)(不與點(diǎn)AB重合),直線CDy軸平行,交直線AB于點(diǎn)C,連接ADBD

1)求拋物線的解析式;

2)設(shè)點(diǎn)D的橫坐標(biāo)為m,則用m的代數(shù)式表示線段DC的長(zhǎng);

3)在(2)的條件下,若△ADB的面積為S,求S關(guān)于m的函數(shù)關(guān)系式,并求出當(dāng)S取最大值時(shí)的點(diǎn)C的坐標(biāo);

4)當(dāng)點(diǎn)D為拋物線的頂點(diǎn)時(shí),若點(diǎn)P是拋物線上的動(dòng)點(diǎn),點(diǎn)Q是直線AB上的動(dòng)點(diǎn),判斷有幾個(gè)位置能使以點(diǎn)P,Q,C,D為頂點(diǎn)的四邊形為平行四邊形,直接寫出相應(yīng)的點(diǎn)Q的坐標(biāo).

查看答案和解析>>

同步練習(xí)冊(cè)答案