【題目】已知在紙面上有一數(shù)軸如圖1,根據(jù)給出的數(shù)軸,解答下面的問題:
(1)請你根據(jù)圖中A,B兩點(diǎn)的位置,分別寫出它們所表示的有理數(shù).
(2)請問A,B兩點(diǎn)之間的距離是多少?
(3)在數(shù)軸上畫出與點(diǎn)A的距離為2的點(diǎn)(用不同于A,B的其它字母表示),并寫出這些點(diǎn)表示的數(shù).
(4)折疊紙面.若在數(shù)軸上﹣1表示的點(diǎn)與5表示的點(diǎn)重合,回答以下問題:
①10表示的點(diǎn)與數(shù) 表示的點(diǎn)重合;
②若數(shù)軸上M、N兩點(diǎn)之間的距離為2018(M在N的左側(cè)),且M、N兩點(diǎn)經(jīng)折疊后重合,求M、N兩點(diǎn)表示的數(shù)是多少?
(5)如圖2,半徑為2的圓周上有一點(diǎn)Q落在數(shù)軸上A點(diǎn)處,求將圓在數(shù)軸上向右滾動(無滑動)一周后點(diǎn)Q所處的位置的點(diǎn)在數(shù)軸上所表示的數(shù).
【答案】(1)A表示的數(shù)是1,B表示的數(shù)是﹣2.5;
(2)3.5;
(3)-1和3;
(4)①﹣6;②點(diǎn)M為﹣1007,點(diǎn)N為1011.
(5)4π+1.
【解析】
(1)數(shù)軸上原點(diǎn)左側(cè)的數(shù)為負(fù)數(shù),原點(diǎn)右側(cè)的數(shù)為正數(shù);
(2)A、B兩點(diǎn)間的距離可表示為1-(-2.5),求解即可;
(3)與點(diǎn)A距離為2的點(diǎn),即A左右兩邊距離兩個(gè)單位長度的點(diǎn),也就是數(shù)為1﹣2和1+2的點(diǎn);
(4)①先求出-1和5的中點(diǎn),再根據(jù)中心對稱列式計(jì)算即可得解;
②根據(jù)中點(diǎn)的定義求出MN的一半,然后分別列式計(jì)算即可得解;
(5)先求出圓的周長,再根據(jù)平移規(guī)律即可得出結(jié)論.
解:(1)點(diǎn)A表示的數(shù)為1;點(diǎn)B表示的數(shù)為﹣2.5;
(2)A、B兩點(diǎn)之間的距離為1-(-2.5)=3.5.
(3)在數(shù)軸上畫出與點(diǎn)A的距離為2的點(diǎn)分別為3和﹣1,即數(shù)軸中C和D.
(4)①(﹣1+5)÷2=2,
2﹣(10﹣2)=﹣6.
故答案為:﹣6;
②∵M、N兩點(diǎn)之間的距離為2018,
∴MN=×2018=1009,
∵對折點(diǎn)的數(shù)為2,
∴點(diǎn)M為2﹣1009=﹣1007,點(diǎn)N為2+1009=1011.
(5)∵圓的周長=4π
∴將圓在數(shù)軸上向右滾動(無滑動)一周后點(diǎn)Q所處的位置的點(diǎn)在數(shù)軸上所表示的數(shù)為4π+1.
年級 | 高中課程 | 年級 | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來源: 題型:
【題目】直線y=x+b與雙曲線y=交于點(diǎn)A(﹣1,﹣5).并分別與x軸、y軸交于點(diǎn)C、B.
(1)直接寫出b= ,m= ;
(2)根據(jù)圖象直接寫出不等式x+b<的解集為 ;
(3)若點(diǎn)D在x軸的正半軸上,是否存在以點(diǎn)D、C、B構(gòu)成的三角形與△OAB相似?若存在,請求出D的坐標(biāo);若不存在,請說明理由.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,射線上有三點(diǎn)、、,滿足, , ,點(diǎn)從點(diǎn)出發(fā),沿方向以秒的速度勻速運(yùn)動,點(diǎn)從點(diǎn)出發(fā)在線段上向點(diǎn)勻速運(yùn)動,兩點(diǎn)同時(shí)出發(fā),當(dāng)點(diǎn)運(yùn)動到點(diǎn)時(shí),點(diǎn)、停止運(yùn)動.
(1)若點(diǎn)運(yùn)動速度為秒,經(jīng)過多長時(shí)間、兩點(diǎn)相遇?
(2)當(dāng)在線段上且時(shí),點(diǎn)運(yùn)動到的位置恰好是線段的三等分點(diǎn),
求點(diǎn)的運(yùn)動速度;
(3)當(dāng)點(diǎn)運(yùn)動到線段上時(shí),分別取和的中點(diǎn)、,求的值.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】△ABC在平面直角坐標(biāo)系中的位置如圖所示.
(1)作出△ABC關(guān)于軸對稱的△A1B1C1,并寫出△A1B1C1各頂點(diǎn)的坐標(biāo);
(2)將△ABC向右平移6個(gè)單位,作出平移后的△A2B2C2,并寫出△A2B2C2各頂點(diǎn)的坐標(biāo);
(3)觀察△A1B1C和△A2B2C2,它們是否關(guān)于某直線對稱?若是,請用實(shí)線條畫出對稱軸。
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】在中,對角線交于點(diǎn),將過點(diǎn)的直線繞點(diǎn)旋轉(zhuǎn),交射線于點(diǎn),于點(diǎn),于點(diǎn),連接.
如圖當(dāng)點(diǎn)與點(diǎn)重合時(shí),請直接寫出線段的數(shù)量關(guān)系;
如圖,當(dāng)點(diǎn)在線段上時(shí),與有什么數(shù)量關(guān)系?請說明你的結(jié)論;
如圖,當(dāng)點(diǎn)在線段的延長線上時(shí),與有什么數(shù)量關(guān)系?請說明你的結(jié)論.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】閱讀并解決其后的問題:我們將四個(gè)有理數(shù)、、、寫成 的形式,稱它為由有理數(shù)、、、組成的二階矩陣,稱、、、為構(gòu)成這個(gè)矩陣的元素,如由有理數(shù)、2、3、組成的二階矩陣是 ,、2、3、是這個(gè)矩陣的元素,當(dāng)且僅當(dāng)兩個(gè)矩陣相同位置上的元素相等時(shí),我們稱這兩個(gè)二階矩陣相等,下面是兩個(gè)二階矩陣的加法運(yùn)算過程:① + = = ,② + = = ,
(1)通過觀察上述例子中矩陣加法運(yùn)算的規(guī)律,可歸納得二階矩陣的加法運(yùn)算法則是:兩個(gè)二階矩陣相加, .
(2)①計(jì)算: + ;
②若 + = ,求的值;
(3)若記A= ,B= ,試依據(jù)二階矩陣的加法法則說明A+B=B+A成立
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】已知:如圖所示,菱形ABCD中,E,F(xiàn)分別是CB,CD上的點(diǎn),且BE=DF.
(1)試說明:AE=AF;
(2)若∠B=60°,點(diǎn)E,F(xiàn)分別為BC和CD的中點(diǎn),試說明:△AEF為等邊三角形.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,△ABC內(nèi)接于⊙O,CD平分∠ACB交⊙O于D,過點(diǎn)D作PQ∥AB分別交CA、CB延長線于P、Q,連接BD.
(1)求證:PQ是⊙O的切線;
(2)求證:BD2=ACBQ;
(3)若AC、BQ的長是關(guān)于x的方程的兩實(shí)根,且tan∠PCD=,求⊙O的半徑.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,已知四邊形ABCD的一組對邊AD、BC的延長線相交于點(diǎn)E.另一組對邊AB、DC的延長線相交于點(diǎn)F,若cos∠ABC=cos∠ADC=,CD=5,CF=ED=n,則AD的長為_____(用含n的式子表示).
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺 | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com