【題目】1)如圖(1),將兩塊直角三角尺疊放在一起,并且它們的直角頂點(diǎn)C重合,請比較∠ACE和∠DCB的大小,并說明理由;

2)如圖(2),若是將等腰直角三角尺的直角頂點(diǎn)和另一把直角三角尺的60°角的頂點(diǎn)A重合,將三角板ADE繞點(diǎn)A旋轉(zhuǎn),旋轉(zhuǎn)過程中三角板ADE的邊AD始終在∠BAC的內(nèi)部,試探索:在旋轉(zhuǎn)過程中,∠CAE與∠BAD的差是否發(fā)生變化?若不變,請求出這個(gè)差值;若變化,請求出差的變化范圍.

【答案】1)∠ACE=∠DCB,理由見解析;(2)∠CAE﹣∠BAD30°,理由見解析

【解析】

1)結(jié)論:∠ACE=∠DCB.根據(jù)角的和差定義證明即可;

2)∠CAE與∠BAD的差為30°不變.理由角的和差定義計(jì)算即可.

解:(1)結(jié)論:∠ACE=∠DCB

理由如下:∵∠ACD=∠ECB90°

∴∠ACE=∠ACD﹣∠ECD=∠ECB﹣∠ECD=∠DCB,

即∠ACE=∠DCB

2)結(jié)論:∠CAE﹣∠BAD30°

理由:∵∠CAE﹣∠BAD=∠DAE﹣∠BAC90°6030°,

∴∠CAE與∠BAD的差為30°不變.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

【題目】“十九大”之后,某種子站讓利給農(nóng)民,對價(jià)格為a元/千克的種子,如果一次購買2千克以上的,超過2千克部分的種子價(jià)格打8折.某科技人員對付款金額和購買量這兩個(gè)變量的對應(yīng)關(guān)系用列表法做了分析,并繪制出了函數(shù)圖象.以下是該科技人員繪制的圖象和表格的不完整資料,已知點(diǎn)A的坐標(biāo)為(2,10).請你結(jié)合表格和圖象:

付款金額(元)

a

7.5

10

12

b

購買量(千克)

1

1.5

2

2.5

3

(1)、指出付款金額和購買量哪個(gè)變量是函數(shù)的自變量x,并寫出表中a、b的值;

(2)、求出當(dāng)x>2時(shí),y關(guān)于x的函數(shù)解析式;

(3)、甲農(nóng)戶將8.8元錢全部用于購買該玉米種子,乙農(nóng)戶購買了4165克該玉米種子,分別計(jì)算他們的購買量和付款金額.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在同一平面內(nèi)四個(gè)點(diǎn)A,B,C,D

1)利用尺規(guī),按下面的要求作圖.要求:不寫畫法,保留作圖痕跡,不必寫結(jié)論.

作射線AC

連接AB,BCBD,線段BD與射線AC相交于點(diǎn)O

在線段AC上作一條線段CF,使CFACBD

2)觀察(1)題得到的圖形,我們發(fā)現(xiàn)線段AB+BCAC,得出這個(gè)結(jié)論的依據(jù)是   

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】甲、乙兩座城市的中心火車站A,B兩站相距360 km.一列動車與一列特快列車分別從A,B兩站同時(shí)出發(fā)相向而行,動車的平均速度比特快列車快54 km/h,當(dāng)動車到達(dá)B站時(shí),特快列車恰好到達(dá)距離A135 km處的C站.求動車和特快列車的平均速度各是多少?

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】《算法統(tǒng)宗》是中國古代數(shù)學(xué)名著,作者是我國明代數(shù)學(xué)家程大位.在《算法統(tǒng)宗》中記載:以繩測井,若將繩三折測之,繩多4尺,若將繩四折測之,繩多1尺,繩長井深各幾何?

譯文:用繩子測水井深度,如果將繩子折成三等份,井外余繩4尺;如果將繩子折成四等份,井外余繩1尺.問繩長、井深各是多少尺?

設(shè)井深為x尺,根據(jù)題意列方程,正確的是(  )

A. 3(x+4)=4(x+1) B. 3x+4=4x+1

C. 3(x﹣4)=4(x﹣1) D.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】小軍和爸爸同時(shí)從家騎自行車去圖書館,爸爸先以150/分的速度騎行一段時(shí)間,休息了5分鐘,再以m/分的速度到達(dá)圖書館,小軍始終以同一速度騎行,兩人行駛的路程y(米)與時(shí)間x(分)的關(guān)系如圖所示,請結(jié)合圖像,解答下列問題:

1a= b= ,m=

2若小軍的速度是120/分,求小軍在途中與爸爸第二次相遇時(shí),距圖書館的距離;

3)在(2)的條件下,爸爸自第二次出發(fā)至到達(dá)圖書館前,何時(shí)與小軍相距100米?

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】(12分)如圖,已知三角形ABC的邊AB⊙O的切線,切點(diǎn)為BAC經(jīng)過圓心O并與圓相交于點(diǎn)D、C,過C作直線CEAB,交AB的延長線于點(diǎn)E

1)求證:CB平分∠ACE;

2)若BE=3,CE=4,求⊙O的半徑.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】我們知道,任意一個(gè)正整數(shù)n都可以進(jìn)行這樣的分解:是正整數(shù),且).在n的所有這種分解中,如果、兩因數(shù)之差的絕對值最小,我們就稱n的最佳分解,并規(guī)定:.例如12可以分解成,,因?yàn)?/span>,所以12的最佳分解,所以.如果一個(gè)兩位正整數(shù),,、為正整數(shù)),交換其個(gè)位上的數(shù)字與十位上的數(shù)字得到的新數(shù)減去原來的兩位正整數(shù)所得的差為18,那么我們稱這個(gè)數(shù)為“吉祥數(shù)”,則所有“吉祥數(shù)”中的最大值為_____________

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】鐵路貨運(yùn)調(diào)度站有A、B兩個(gè)信號燈,在燈這旁?恐住⒁、丙三列火車.它們中最長的車長與居中車長之差等于居中車長與最短車長之差,其中乙車的車長居中,最開始的時(shí)候,甲、丙兩車車尾對齊,且車尾正好位于A信號燈處,而車頭則沖著B信號燈的方向,乙車的車尾則位于B信號燈處,車頭則沖著A的方向,現(xiàn)在,三列火車同時(shí)出發(fā)向前行駛,3秒之后三列火車的車頭恰好相遇,再過9秒,甲車恰好超過丙車,而丙車也正好完全和乙車錯開,請問:甲乙兩車從車頭相遇直到完全錯開一共用了_____秒鐘.

查看答案和解析>>

同步練習(xí)冊答案