【題目】將一副三角板Rt△ABD與Rt△ACB(其中∠ABD=∠ACB=90°,∠D=60°,∠ABC=45°)如圖擺放,Rt△ABD中∠D所對的直角邊與Rt△ACB的斜邊恰好重合.以AB為直徑的圓經過點C,且與AD相交于點E,連接EB,連接CE并延長交BD于F.
(1)求證:EF平分∠BED;
(2)求△BEF與△DEF的面積的比值.
科目:初中數學 來源: 題型:
【題目】端午節(jié)當天,小明帶了四個粽子(除味道不同外,其它均相同),其中兩個是大棗味的,另外兩個是火腿味的,準備按數量平均分給小紅和小剛兩個好朋友.
(1)請你用樹狀圖或列表的方法表示小紅拿到的兩個粽子的所有可能性;
(2)請你計算小紅拿到的兩個粽子剛好是同一味道的概率.
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】如圖,已知拋物線經過,兩點,與x軸的另一個交點為C,頂點為D,連結CD.
(1)求該拋物線的表達式;
(2)點P為該拋物線上一動點(與點B、C不重合),設點P的橫坐標為t.
①當點P在直線BC的下方運動時,求的面積的最大值;
②該拋物線上是否存在點P,使得若存在,求出所有點P的坐標;若不存在,請說明理由.
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】
情境觀察:將矩形ABCD紙片沿對角線AC剪開,得到△ABC和△A′C′D,如圖1所示.將△A′C′D的頂點A′與點A重合,并繞點A按逆時針方向旋轉,使點D、A(A′)、B在同一條直線上,如圖2所示.
觀察圖2可知:與BC相等的線段是 ▲ ,∠CAC′= ▲ °.
問題探究:如圖3,△ABC中,AG⊥BC于點G,以A為直角頂點,分別以AB、AC為直角邊,向△ABC外作等腰Rt△ABE和等腰Rt△ACF,過點E、F作射線GA的垂線,垂足分別為P、Q. 試探究EP與FQ之間的數量關系,并證明你的結論.
拓展延伸:如圖4,△ABC中,AG⊥BC于點G,分別以AB、AC為一邊向△ABC外作矩形ABME和矩形ACNF,射線GA交EF于點H. 若AB=k AE,AC=k AF,試探究HE與HF之間的數量關系,并說明理由.
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】如圖,線段AC=n+1(其中n為正整數),點B在線段AC上,在線段AC同側作菱形ABMN與菱形BCEF,點F在BM邊上,AB=n,∠ABM=60°,連接AM、ME、EA得到△AME.當AB=1時,△AME的面積記為S1;當AB=2時,△AME的面積記為S2;當AB=3時,△AME的面積記為S3;…;當AB=n時,△AME的面積記為Sn,當n≥2時,Sn﹣Sn﹣1=__.
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】如圖,航模小組用無人機來測量建筑物BC的高度,無人機從A處測得建筑物頂部B的仰角為45°,測得底部C的俯角為60°,若此時無人機與該建筑物的水平距離AD為30m,則該建筑物的高度BC為_____m.(結果保留根號)
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】平面直角坐標系xOy中,對于點A和線段BC,給出如下定義:若△ABC是等腰直角三角形,則稱點A為BC的“等直點”;特別的,若△ABC是以BC為斜邊的等腰直角三角形,則稱點A為BC的“完美等直點”.
(1)若B(﹣2,0),C(2,0),則在D(0,2),E(4,4),F(﹣2,﹣4),G(0,)中,線段BC的“等直點”是 ;
(2)已知B(0,﹣6),C(8,0).
①若雙曲線y=上存在點A,使得點A為BC的“完美等直點”,求k的值;
②在直線y=x+6上是否存在點P,使得點P為BC的“等直點”?若存在,求出點P的坐標;若不存在,請說明理由;
(3)若B(0,2),C(2,0),⊙T的半徑為3,圓心為T(t,0).當在⊙T內部,恰有三個點是線段BC的“等直點”時,直接寫出t的取值范圍.
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】已知拋物線y=ax2+bx+c與x軸交于點A(﹣1,0),與y軸的交點在(0,2),(0,3)之間(包含端點),頂點坐標為(1,n),則下列結論:
①2a+b<0;
②﹣1≤a≤﹣;
③對于任意實數m,a(m2﹣1)+b(m﹣1)≤0總成立;
④關于x的方程ax2+bx+c=n+1有兩個不相等的實數根.
其中結論正確的序號是_____.
查看答案和解析>>
湖北省互聯網違法和不良信息舉報平臺 | 網上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com