【題目】如圖,ABC中,∠ACB=90°,AC =3,BC =4,AB=5,BD平分∠ABC,如果M、N分別為BD、BC上的動點,那么CM+MN的最小值是____

【答案】2.4

【解析】

過點CCEAB于點E,交BD于點M,過點MMNBCN,則CE即為CMMN的最小值,再根據(jù)三角形的面積公式求出CE的長,即為CMMN的最小值.

解:過點CCEAB于點E,交BD于點M,過點MMNBCN,
BD平分∠ABC,MEAB于點E,MNBCN,
MNME,
CECMMECMMN的最小值.
AC=3,BC=4,AB=5,
AC2BC2AB2,
∴∠ACB=90°,
ABCEBCAC
5CE=3×4
CE=2.4.
CMMN的最小值為2.4.
故答案為:2.4

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

【題目】“校本課程”是學(xué)生課外活動的重要內(nèi)容,某校共有“文學(xué)欣賞”、“英語角”、“趣味數(shù)學(xué)”、“法律普及”這四種校本課程.為了解學(xué)生參加“文學(xué)欣賞”、“英語角”、“趣味數(shù)學(xué)”、“法律普及”校本課程(以下分別用A、B、C、D表示)的情況,對學(xué)生進(jìn)行了抽樣調(diào)查,并將調(diào)查情況繪制成兩幅統(tǒng)計圖(尚不完整).
請根據(jù)以上信息,解答下列問題:
(1)本次抽樣調(diào)查的學(xué)生共有人.
(2)將兩幅統(tǒng)計圖補(bǔ)充完整;
(3)若該校有4000人,請估計參加法律普及的人數(shù).

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】12分)已知O是直線AB上的一點,∠COD是直角,OE平分∠BOC.

1)如圖①,若∠AOC30°,求∠DOE的度數(shù);

2)在圖①中,若∠AOCa,直接寫出∠DOE的度數(shù)(用含a的代數(shù)式表示);

3)將圖①中的∠DOC繞頂點O順時針旋轉(zhuǎn)至圖②的位置.

①探究∠AOC和∠DOE的度數(shù)之間的關(guān)系,寫出你的結(jié)論,并說明理由;

②在∠AOC的內(nèi)部有一條射線OF,且∠AOC4AOF2BOEAOF,試確定∠AOF與∠DOE的度數(shù)之間的關(guān)系,說明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,這四邊行ABCD中,點M、N分別在AB,CD邊上,將四邊形ABCD沿MN翻折,使點B、C分別在四邊形外部點B1 , C1處,則∠A+∠B1+∠C1+∠D=

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】在杭州西湖風(fēng)景游船處,如圖,在離水面高度為5m的岸上,有人用繩子拉船靠岸,開始時繩子BC的長為13m,此人以0.5m/s的速度收繩.10s后船移動到點D的位置,問船向岸邊移動了多少m?(假設(shè)繩子是直的,結(jié)果保留根號)

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在Rt△ABC中,∠ABC=90°,AB=3,BC=4.Rt△MPN中,∠MPN=90°,點P在AC上,PM交AB于點E,PN交BC于點F,當(dāng)PE=2PF時,AP=________.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】已知數(shù)軸上的點A和點B之間的距離為28個單位長度,點A在原點的左邊,距離原點8個單位長度,點B在原點的右邊.

()求點A,點B對應(yīng)的數(shù);

()數(shù)軸上點A以每秒1個單位長度出發(fā)向左移動,同時點B以每秒3個單位長度的速度向左移動,在點C處追上了點A,求點C對應(yīng)的數(shù).

()已知在數(shù)軸上點M從點A出發(fā)向右運動,速度為每秒1個單位長度,同時點N從點B出發(fā)向右運動,速度為每秒2個單位長度,設(shè)線段NO的中點為P(O為原點),在運動的過程中,線段的值是否變化?若不變,請說明理由并求其值;若變化,請說明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】某工廠沿路護(hù)欄的紋飾部分是由若干個和菱形ABCD(如圖①)全等的圖案組成的,每增加一個菱形,紋飾長度就增加dcm(如圖②).已知菱形ABCD的邊長為6cm,∠BAD=60°.

(1)求AC的長;

(2)若d=15cm,紋飾總長度L為3918cm,則需要多少個這樣的菱形圖案?

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】計算:(﹣2015)0+|1﹣ |﹣2cos45°+ +(﹣ ﹣2

查看答案和解析>>

同步練習(xí)冊答案