【題目】已知拋物線經(jīng)過點、、

(1)求拋物線的解析式;

(2)聯(lián)結AC、BC、AB,求的正切值;

(3)點P是該拋物線上一點,且在第一象限內(nèi),過點P作軸于點,當點在點的上方,且相似時,求點P的坐標.

【答案】(1) (2)(3)的坐標為

【解析】分析:(1)把A、B、C三點坐標帶入拋物線解析式,利用待定系數(shù)法求解即可;

(2)由兩點間的距離公式求得∴的長,由勾股定理的逆定理可判斷,即可求得的值;

(3)當APGABC相似時,存在兩種可能:∠PAG=CAB ,分類討論即可.

詳解:(1)設所求二次函數(shù)的解析式為

,)、,)、,)代入,得

解得,

所以,這個二次函數(shù)的解析式為;

(2),)、,)、,

,,

,

(3)過點P,垂足為H,

,則

,

,

∴當APGABC相似時,存在以下兩種可能:

1° ∠PAG=∠CAB

解得;

∴點的坐標為

,

,解得,

∴點的坐標為

練習冊系列答案
相關習題

科目:初中數(shù)學 來源: 題型:

【題目】(1)某學校智慧方園數(shù)學社團遇到這樣一個題目:

如圖1,在中,點在線段上,,,,求的長.

經(jīng)過社團成員討論發(fā)現(xiàn),過點,交的延長線于點,通過構造就可以解決問題(如圖

請回答:    

(2)請參考以上解決思路,解決問題:

如圖3,在四邊形中,對角線相交于點,,,求的長.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】新能源汽車環(huán)保節(jié)能,越來越受到消費者的喜愛.各種品牌相繼投放市場.一汽貿(mào)公司經(jīng)銷某品牌新能源汽車.去年銷售總額為5000萬元,今年1~5月份,每輛車的銷售價格比去年降低1萬元.銷售數(shù)量與去年一整年的相同.銷售總額比去年一整年的少20%,今年1~5月份每輛車的銷售價格是多少萬元?設今年1~5月份每輛車的銷售價格為x萬元.根據(jù)題意,列方程正確的是( )

A. B.

C. D.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,山頂建有一座鐵塔,塔高米,測量人員在一個小山坡的P處測得塔的底部B點的仰角為,塔頂C點的仰角為已測得小山坡的坡角為,坡長求山的高度精確到1參考數(shù)據(jù):

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,中,,,點DBC的中點,將沿AD翻折得到,聯(lián)結CE,那么線段CE的長等于_______

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】列方程解應用題:

已知A、B兩地相距48千米,甲騎自行車每小時走18千米,乙步行每小時走6千米,甲乙兩人分別A、B兩地同時出發(fā).

1)同向而行,開始時乙在前,經(jīng)過多少小時甲追上乙?

2)相向而行,經(jīng)過多少小時兩人相距40千米?

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】已知,矩形ABCD中,AC的垂直平分線EF分別交AD、BC于點E、F,垂足為O.

(1)如圖1,連接AF、CE,求證:四邊形AFCE為菱形;

(2)如圖2,若AB=4cm,AF=5cm,動點P、Q分別從A、C兩點同時出發(fā),沿△AFB和△CDE各邊勻速運動一周,即點P自A→F→B→A停止,點Q自C→D→E→C停止,在運動過程中:

①已知點P的速度為每秒5cm,點Q的速度為每秒4cm,運動時間為秒,當A、C、P、Q四點為頂點的四邊形是平行四邊形時,求的值;

②若點P、Q的運動路程分別為(單位:cm,),已知A、C、P、Q四點為頂點的四邊形是平行四邊形,求滿足的數(shù)量關系式。

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】已知關于x的一元二次方程x2+5x﹣2m=0有兩個不相等的實數(shù)根.

(1)求m的取值范圍;

(2)若兩個實數(shù)根分別為x1x2,且x12+x22=23,求m的值.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】(1)閱讀下面材料:

點A,B在數(shù)軸上分別表示實數(shù)a,b,A,B兩點之間的距離表示為|AB|.

當A,B兩點中有一點在原點時,不妨設點A在原點,如圖(1),|AB|=|OB|=|b|=|a﹣b|;當A,B兩點都不在原點時,

①如圖(2),點A,B都在原點的右邊,|AB|=|OB|﹣|OA|=|b|﹣|a|=b﹣a=|a﹣b|;

②如圖(3),點A,B都在原點的左邊,|AB|=|OB|﹣|OA|=|b|﹣|a|=﹣b﹣(﹣a)=|a﹣b|;

③如圖(4),點A,B在原點的兩邊,|AB|=|OA|+|OB|=|a|+|b|=a+(﹣b)=|a﹣b|;

綜上,數(shù)軸上A,B兩點之間的距離|AB|=|a﹣b|.

(2)回答下列問題:

①數(shù)軸上表示2和5的兩點之間的距離是  ,數(shù)軸上表示﹣2和﹣5的兩點之間的距離是  ,數(shù)軸上表示1和﹣3的兩點之間的距離是  

②數(shù)軸上表示x和﹣1的兩點A和B之間的距離是  ,如果|AB|=2,那么x為  

③當代數(shù)式|x+1|+|x﹣2|取最小值時,相應的x的取值范圍是  

④解方程|x+1|+|x﹣2|=5.

查看答案和解析>>

同步練習冊答案