【題目】從寧海縣到某市,可乘坐普通列車或高鐵,已知高鐵的行駛路程與普通列車的行駛路程之和是920千米,而普通列車的行駛路程是高鐵的行駛路程的1.3倍.
(1)求普通列車的行駛路程;
(2)若高鐵的平均速度(千米/時)是普通列車的平均速度(千米/時)的2.5倍,且乘坐高鐵所需時間比乘坐普通列車所需時間縮短3小時,求高鐵的平均速度.
【答案】(1)普通列車的行駛路程是520千米;(2)高鐵的平均速度是300千米/時
【解析】
(1)設(shè)高鐵的行駛路程為x千米,則普通列車的行駛路程為1.3x千米,根據(jù)“普通列車的行駛路程+高鐵的行駛路程=920千米”列出方程并解答.
(2)設(shè)普通列車平均速度是a千米/時,根據(jù)高鐵所需時間比乘坐普通列車所需時間縮短3小時,列出分式方程,然后求解即可.
解:(1)設(shè)高鐵的行駛路程為x千米,則普通列車的行駛路程為1.3x千米,
依題意得:x+1.3x=920
解得x=400.
所以1.3x=520(千米)
答:普通列車的行駛路程是520千米;
(2)設(shè)普通列車平均速度是a千米/時,則高鐵平均速度是2.5a千米/時,根據(jù)題意得:
解得:a=120,
經(jīng)檢驗a=120是原方程的解,
則高鐵的平均速度是120×2.5=300(千米/時),
答:高鐵的平均速度是300千米/時
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,正六邊形ABCDEF中,P、Q兩點分別為△ACF、△CEF的內(nèi)心.若AF=2,則PQ的長度為何?( 。
A. 1 B. 2 C. 2﹣2 D. 4﹣2
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,△ABD≌△CDB,且AB,CD是對應(yīng)邊.下面四個結(jié)論中不正確的是( )
A. △ABD和△CDB的面積相等B. △ABD和△CDB的周長相等
C. ∠A+∠ABD=∠C+∠CBDD. AD∥BC,且AD=BC
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】某公司為一種新型電子產(chǎn)品在該城市的特約經(jīng)銷商,已知每件產(chǎn)品的進(jìn)價為40元,該公司每年銷售這種產(chǎn)品的其他開支(不含進(jìn)貨價)總計100萬元,在銷售過程中得知,年銷售量y(萬件)與銷售單價x(元)之間存在如表所示的函數(shù)關(guān)系,并且發(fā)現(xiàn)y是x的一次函數(shù).
銷售單價x(元) | 50 | 60 | 70 | 80 |
銷售數(shù)量y(萬件) | 5.5 | 5 | 4.5 | 4 |
(1)求y與x的函數(shù)關(guān)系式;
(2)問:當(dāng)銷售單價x為何值時,該公司年利潤最大?并求出這個最大值;
【備注:年利潤=年銷售額﹣總進(jìn)貨價﹣其他開支】
(3)若公司希望年利潤不低于60萬元,請你幫助該公司確定銷售單價的范圍.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,銳角的兩條高、相交于點,且.
(1)證明:.
(2)判斷點是否在的角平分線上,并說明理由.
(3)連接,與是否平行?為什么?
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】在平面直角坐標(biāo)系中,定義點P(x,y)的變換點為P′(x+y,x﹣y).
(1)如圖1,如果⊙O的半徑為2,
①判斷M(2,0),N(﹣2,1)兩個點的變換點M′、N′與⊙O的位置關(guān)系;
②若點P在直線y=x-2上,點P的變換點P′不在⊙O外,結(jié)合圖形求點P橫坐標(biāo)x的取值范圍.
(2)如圖2,如果⊙O的半徑為1,且P的變換點P′在直線y=﹣2x+5上,求點P與⊙O上任意一點距離的最小值.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,將△ABC繞點C順時針旋轉(zhuǎn)90°得到△EDC.若點A,D,E在同一條直線上,∠ACB=20°,則∠ADC的度數(shù)是( )
A. 55° B. 60° C. 65° D. 70°
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在每個小正方形的邊長為1的網(wǎng)格中,點O,A,B,M均在格點上,P為線段OM上的一個動點.
(1)OM的長等于_______;
(2)當(dāng)點P在線段OM上運動,且使PA2+PB2取得最小值時,請借助網(wǎng)格和無刻度的直尺,在給定的網(wǎng)格中畫出點P的位置,并簡要說明你是怎么畫的.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com