【題目】在平面直角坐標(biāo)系中,定義點(diǎn)P(x,y)的變換點(diǎn)為P′(x+y,x﹣y).
(1)如圖1,如果⊙O的半徑為2,
①判斷M(2,0),N(﹣2,1)兩個(gè)點(diǎn)的變換點(diǎn)M′、N′與⊙O的位置關(guān)系;
②若點(diǎn)P在直線(xiàn)y=x-2上,點(diǎn)P的變換點(diǎn)P′不在⊙O外,結(jié)合圖形求點(diǎn)P橫坐標(biāo)x的取值范圍.
(2)如圖2,如果⊙O的半徑為1,且P的變換點(diǎn)P′在直線(xiàn)y=﹣2x+5上,求點(diǎn)P與⊙O上任意一點(diǎn)距離的最小值.
【答案】(1)①M’點(diǎn)在圓O上,點(diǎn)N’不在圓O上.;②;(2).
【解析】
(1)①根據(jù)新定義得到點(diǎn)M的變換點(diǎn)M′的坐標(biāo)為(2,2),于是根據(jù)勾股定理計(jì)算出OM′=2,則根據(jù)點(diǎn)與圓的位置關(guān)系的判定方法可判斷點(diǎn)M的變換點(diǎn)在⊙O上;同樣方法可判斷點(diǎn)N(-1,-3)的變換點(diǎn)在⊙O外;②利用一次函數(shù)圖象上點(diǎn)的坐標(biāo)特征,設(shè)P點(diǎn)坐標(biāo)為(x,x-2),利用新定義得到P點(diǎn)的變換點(diǎn)為P′的坐標(biāo)為(2x-2, 2),則根據(jù)勾股定理計(jì)算出OP′=,然后利用點(diǎn)與圓的位置關(guān)系得到≤2,解不等式得;
(2)設(shè)點(diǎn)P′的坐標(biāo)為(x,-2x+5),P(m,n),根據(jù)新定義得到m+n=x,m-n=-2x+5,消去x得3m+n=5,則n=-3m+5,于是得到P點(diǎn)坐標(biāo)為(m,-3m+5),則可判斷點(diǎn)P在直線(xiàn)y=-3x+5上,設(shè)直線(xiàn)y=-3x+5與x軸相交于點(diǎn)A,與y軸相交于點(diǎn)B,過(guò)O點(diǎn)作OH⊥AB于H,交⊙O于C,如圖2,易得A(,0),B(0,5),利用勾股定理計(jì)算出AB=,再利用面積法計(jì)算出OH=,所以CH=-1,當(dāng)點(diǎn)P在H點(diǎn)時(shí),PC為點(diǎn)P與⊙O上任意一點(diǎn)距離的最小值.
(1)①M(2,0)的變換點(diǎn)M′的坐標(biāo)為(2,2),則OM′==2,所以點(diǎn)M(2,0)的變換點(diǎn)在⊙O上;
N(-2,1)的變換點(diǎn)N′的坐標(biāo)為(-1,-3),則ON′==>2,所以點(diǎn)N(-2,-1)的變換點(diǎn)在⊙O外;
②設(shè)P點(diǎn)坐標(biāo)為(x,x-2),則P點(diǎn)的變換點(diǎn)為P′的坐標(biāo)為(2x-2,2),則OP′=,
∵點(diǎn)P′不在⊙O外,
∴≤2,
∴(2x-2)2≤4,即(x-1)2≤1,
∴-1≤x-1≤1,解得0≤x≤2,
即點(diǎn)P橫坐標(biāo)的取值范圍為0≤x≤2;
(2)設(shè)點(diǎn)P′的坐標(biāo)為(x,-2x+5),P(m,n),
根據(jù)題意得m+n=x,m-n=-2x+5,
∴3m+n=5,
即n=-3m+5,
∴P點(diǎn)坐標(biāo)為(m,-3m+5),
∴點(diǎn)P在直線(xiàn)y=-3x+5上,
設(shè)直線(xiàn)y=-3x+5與x軸相交于點(diǎn)A,與y軸相交于點(diǎn)B,過(guò)O點(diǎn)作OH⊥AB于H,交⊙O于C,如圖,
則A(,0),B(0,5),
∴AB==,
∵OHAB=OAOB,
∴OH==,
∴CH=-1,
即點(diǎn)P與⊙O上任意一點(diǎn)距離的最小值為-1.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,已知直線(xiàn)與軸、軸分別相交于點(diǎn)、點(diǎn),,若將沿直線(xiàn)折疊,使點(diǎn)與點(diǎn)重合,折痕與軸交于點(diǎn),與交于點(diǎn).
(1)求的值;
(2)求點(diǎn)的坐標(biāo);
(3)求直線(xiàn)的表達(dá)式.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,在等邊三角形ABC中,在AC邊上取兩點(diǎn)M、N,使∠MBN=30°.若AM=m,MN=x,CN=n,則以x,m,n為邊長(zhǎng)的三角形的形狀為( 。
A. 銳角三角形 B. 直角三角形
C. 鈍角三角形 D. 隨x,m,n的值而定
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】精準(zhǔn)扶貧,助力蘋(píng)果產(chǎn)業(yè)大發(fā)展.甲、乙兩超市為響應(yīng)黨中央將消除貧困和實(shí)現(xiàn)共同富裕作為重要的奮斗目標(biāo),到種植蘋(píng)果的貧困山區(qū)分別用元以相同的進(jìn)價(jià)購(gòu)進(jìn)質(zhì)量相同的蘋(píng)果.甲超市的銷(xiāo)售方案:將蘋(píng)果按大小分類(lèi)包裝銷(xiāo)售,其中大蘋(píng)果千克,以進(jìn)價(jià)的倍價(jià)格銷(xiāo)售,剩下的小蘋(píng)果以高于進(jìn)價(jià)的銷(xiāo)售.乙超市的銷(xiāo)售方案:不將蘋(píng)果按大小分類(lèi),直接包裝銷(xiāo)售,價(jià)格按甲超市大、小兩種蘋(píng)果售價(jià)的平均數(shù)定價(jià).若兩超市將蘋(píng)果全部售完,其中甲超市獲利元(包含人工工資和運(yùn)費(fèi)).
(1)蘋(píng)果進(jìn)價(jià)為每千克多少元?
(2)乙超市獲利多少元?并比較哪種銷(xiāo)售方式更合算.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】從寧?h到某市,可乘坐普通列車(chē)或高鐵,已知高鐵的行駛路程與普通列車(chē)的行駛路程之和是920千米,而普通列車(chē)的行駛路程是高鐵的行駛路程的1.3倍.
(1)求普通列車(chē)的行駛路程;
(2)若高鐵的平均速度(千米/時(shí))是普通列車(chē)的平均速度(千米/時(shí))的2.5倍,且乘坐高鐵所需時(shí)間比乘坐普通列車(chē)所需時(shí)間縮短3小時(shí),求高鐵的平均速度.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如果一個(gè)分式的分子或分母可以因式分解,且這個(gè)分式不可約分,那么我們稱(chēng)這
個(gè)分式為“和諧分式”.
(1)下列分式:①;②;③;④. 其中是“和諧分式”是 (填寫(xiě)序號(hào)即可);
(2)若為正整數(shù),且為“和諧分式”,請(qǐng)寫(xiě)出的值;
(3)在化簡(jiǎn)時(shí),
小東和小強(qiáng)分別進(jìn)行了如下三步變形:
小東:
小強(qiáng):
顯然,小強(qiáng)利用了其中的和諧分式, 第三步所得結(jié)果比小東的結(jié)果簡(jiǎn)單,
原因是: ,
請(qǐng)你接著小強(qiáng)的方法完成化簡(jiǎn).
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】在平面直角坐標(biāo)系中,△ABC的位置如圖所示(每個(gè)小方格都是邊長(zhǎng)為1個(gè)單位長(zhǎng)度的正方形).
(1)若△ABC和△A1B1C1關(guān)于原點(diǎn)O成中心對(duì)稱(chēng)圖形,畫(huà)出△A1B1C1;
(2)將△ABC繞著點(diǎn)A順時(shí)針旋轉(zhuǎn)90°,畫(huà)出旋轉(zhuǎn)后得到的△AB2C2;
(3)在x軸上存在一點(diǎn)P,滿(mǎn)足點(diǎn)P到點(diǎn)B1與點(diǎn)C1距離之和最小,請(qǐng)直接寫(xiě)出P B1+ P C1的最小值為_(kāi)_________.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,把長(zhǎng)方形紙片放入平面直角坐標(biāo)系中,使分別落在軸的的正半軸上,連接,且,.
(1)求點(diǎn)的坐標(biāo);
(2)將紙片折疊,使點(diǎn)與點(diǎn)重合(折痕為),求折疊后紙片重疊部分的面積;
(3)求所在直線(xiàn)的函數(shù)表達(dá)式,并求出對(duì)角線(xiàn)與折痕交點(diǎn)的坐標(biāo).
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,已知平行四邊形ABCD中,E是AB邊的中點(diǎn),DE交AC于點(diǎn)F,AC、DE把它分成的四部分的面積分別為S1S2S3S4,下面結(jié)論:
①只有一對(duì)相似三角形
②EF:ED=1:2
③S1:S2:S3:S4=1:2:4:5
其中正確的結(jié)論是( )
A.①③ B.③ C.① D.①②
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專(zhuān)區(qū) | 電信詐騙舉報(bào)專(zhuān)區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專(zhuān)區(qū) | 涉企侵權(quán)舉報(bào)專(zhuān)區(qū)
違法和不良信息舉報(bào)電話(huà):027-86699610 舉報(bào)郵箱:58377363@163.com