【題目】如圖,已知直線AB∥CD,BE平分∠ABC,交CD于D,∠CDE=150°,則∠C的度數(shù)為( )

A.150°
B.130°
C.120°
D.100°

【答案】C
【解析】解:∵直線AB∥CD,∴∠CDB=∠ABD,

∵∠CDB=180°﹣∠CDE=30°,

∴∠ABD=30°,

∵BE平分∠ABC,∴∠ABD=∠CBD,

∴∠ABC=∠CBD+∠ABD=60°,

∵AB∥CD,

∴∠C=180°﹣∠ABC=180°﹣60°=120°.

所以答案是:C.

【考點(diǎn)精析】解答此題的關(guān)鍵在于理解角的平分線的相關(guān)知識(shí),掌握從一個(gè)角的頂點(diǎn)引出的一條射線,把這個(gè)角分成兩個(gè)相等的角,這條射線叫做這個(gè)角的平分線,以及對(duì)平行線的性質(zhì)的理解,了解兩直線平行,同位角相等;兩直線平行,內(nèi)錯(cuò)角相等;兩直線平行,同旁內(nèi)角互補(bǔ).

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

【題目】下列圖案中,既是軸對(duì)稱圖形又是中心對(duì)稱圖形的個(gè)數(shù)為( )
A.1個(gè)
B.2個(gè)
C.3個(gè)
D.4個(gè)

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,BECE分別為ABC的內(nèi)角平分線和外角平分線,BEAC于點(diǎn)H,CF平分∠ACBBE于點(diǎn)F連接AE.則下列結(jié)論:①∠ECF=90°;②AE=CE;③;④∠BAC=2BEC;⑤∠AEH=BCF,正確的個(gè)數(shù)為(

A.2個(gè)B.3個(gè)C.4個(gè)D.5個(gè)

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】下面是小明設(shè)計(jì)的過直線外一點(diǎn)作這條直線的平行線的尺規(guī)作圖過程.

已知:如圖 ,直線 及直線 外一點(diǎn)

求作:直線 ,使得

作法:如圖

①在直線 上取一點(diǎn) ,連接 ;

②作 的平分線 ;

③以點(diǎn) 為圓心, 長(zhǎng)為半徑畫弧,交射線 于點(diǎn) ;

④作直線

所以直線 就是所求作的直線.根據(jù)小明設(shè)計(jì)的尺規(guī)作圖過程.

1)使用直尺和圓規(guī),補(bǔ)全圖形(保留作圖痕跡);

2)完成下面的證明.

證明:

平分

,

,

____________________)(填推理依據(jù)).

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】將一副三角板中的兩塊直角三角尺的直角頂點(diǎn)C按如圖所示的方式疊放在一起(其中,,;).

1)①若,則的度數(shù)為_____________;

②若,則的度數(shù)為_____________

2)由(1)猜想的數(shù)量關(guān)系,并說明理由.

3)當(dāng)且點(diǎn)E在直線AC的上方時(shí),這兩塊三角尺是否存在一組邊互相平行?若存在,請(qǐng)寫出角度所有可能的值(不必說明理由);若不存在,請(qǐng)說明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】下列命題中真命題的個(gè)數(shù)是(

①平面內(nèi),過一點(diǎn)有且只有一條直線與已知直線平行;②5個(gè)數(shù)中有2個(gè)是無理數(shù);③若,則點(diǎn)P(-m,5)在第一象限;④的算術(shù)平方根是4;⑤經(jīng)過一點(diǎn)有且只有一條直線與已知直線垂直;⑥同旁內(nèi)角互補(bǔ).

A.2B.3C.4D.5

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,△ABC中,AB=AC,∠BAC=45°,BC=2,D是線段BC上的一個(gè)動(dòng)點(diǎn),點(diǎn)D是關(guān)于直線AB、AC的對(duì)稱點(diǎn)分別為M、N,則線段MN長(zhǎng)的最小值是

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,直線y=x+1x軸,y軸分別交于B,A兩點(diǎn),動(dòng)點(diǎn)P在線段AB上移動(dòng),以P為頂點(diǎn)作OPQ=45°x軸于點(diǎn)Q

1)求點(diǎn)A和點(diǎn)B的坐標(biāo);

2)比較AOPBPQ的大小,說明理由.

3)是否存在點(diǎn)P,使得OPQ是等腰三角形?若存在,請(qǐng)求出點(diǎn)P的坐標(biāo);若不存在,請(qǐng)說明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,四邊形ABCD中,∠A=C=90°BE、DF分別平分∠ABC、∠ADC,判斷BE、DF是否平行,并說明理由.

查看答案和解析>>

同步練習(xí)冊(cè)答案