精英家教網 > 初中數學 > 題目詳情

【題目】如圖,BECE分別為ABC的內角平分線和外角平分線,BEAC于點H,CF平分∠ACBBE于點F連接AE.則下列結論:①∠ECF=90°;②AE=CE;③;④∠BAC=2BEC;⑤∠AEH=BCF,正確的個數為(

A.2B.3C.4D.5

【答案】D

【解析】

根據平分,平分,可得則易證,可判斷①正確;根據平分,于點H,可證,得到,可證,則有,可判斷②正確;根據平分,平分,得到,則利用 可以判斷③;根據,,得到,利用,平分,得,可以判斷④正確;根據,平分,得到,,,,故可以判斷⑤正確;

解:∵平分,平分,

,

,故①正確;

平分,于點H,

,

,

,

,

,

,故②正確;

平分平分,

即有:

,故正確;

,

又∵,平分,

即:,故正確;

平分,

,

,故⑤正確;

綜上所述,正確的有:①②③④⑤,共5個,

故選:D

練習冊系列答案
相關習題

科目:初中數學 來源: 題型:

【題目】如圖所示,在平面直角坐標系中,拋物線y=ax2+bx+3(a≠0)經過A(﹣3,0)、B(1,0)兩點,與y軸交于點C,其頂點為D,連接AD,點P是線段AD上一個動點(不與A、D重合),過點P作y軸的垂線PE,垂足點為E,連接AE.

(1)求拋物線的函數解析式,并寫出頂點D的坐標;
(2)如果P點的坐標為(x,y),△PAE的面積為S,求S與x之間的函數關系式,直接寫出自變量x的取值范圍,并求出S的最大值;
(3)在(2)的條件下,當S取到最大值時,過點P作x軸的垂線PF,垂足為F,連接EF,把△PEF沿直線EF折疊,點P的對應點為點P′,求出P′的坐標,并判斷P′是否在該拋物線上.

查看答案和解析>>

科目:初中數學 來源: 題型:

【題目】如圖,已知△ABC中,∠B=90°,AB=8cm,BC=6cmP、Q分別為ABBC邊上的動點,點P從點A開始沿AB方向運動,且速度為每秒1cm,點Q從點B開始B→C方向運動,且速度為每秒2cm,它們同時出發(fā);設出發(fā)的時間為t秒.

1)出發(fā)2秒后,求PQ的長;

2)從出發(fā)幾秒鐘后,△PQB能形成等腰三角形?

3)在運動過程中,直線PQ能否把原三角形周長分成相等的兩部分?若能夠,請求出運動時間;若不能夠,請說明理由.

查看答案和解析>>

科目:初中數學 來源: 題型:

【題目】如圖,以原點O為圓心的圓交x軸于A、B兩點,交y軸的正半軸于點C,D為第一象限內⊙O上的一點,若∠DAB=20°,則∠OCD等于( )

A.20°
B.40°
C.65°
D.70°

查看答案和解析>>

科目:初中數學 來源: 題型:

【題目】(1)x,y都是實數,且y=++8,求5x+13y+6的值;

(2)已知△ABC的三邊長分別為a,bc,且滿足+b2-6b+9=0,求c的取值范圍。

查看答案和解析>>

科目:初中數學 來源: 題型:

【題目】如圖①,在矩形紙片ABCD中,AB= +1,AD=

(1)如圖②,將矩形紙片向上方翻折,使點D恰好落在AB邊上的D′處,壓平折痕交CD于點E,則折痕AE的長為
(2)如圖③,再將四邊形BCED′沿D′E向左翻折,壓平后得四邊形B′C′ED′,B′C′交AE于點F,則四邊形B′FED′的面積為
(3)如圖④,將圖②中的△AED′繞點E順時針旋轉α角,得△A′ED″,使得EA′恰好經過頂點B,求弧D′D″的長 . (結果保留π)

查看答案和解析>>

科目:初中數學 來源: 題型:

【題目】計算題
(1)計算:(cos230°+sin230°)×tan60°
(2)解方程:x2﹣2 x﹣1=0.

查看答案和解析>>

科目:初中數學 來源: 題型:

【題目】如圖,已知直線AB∥CD,BE平分∠ABC,交CD于D,∠CDE=150°,則∠C的度數為( )

A.150°
B.130°
C.120°
D.100°

查看答案和解析>>

科目:初中數學 來源: 題型:

【題目】如圖,Rt△ABC中,∠ACB=90°,AC=3,BC=4,將邊AC沿CE翻折,使點A落在AB上的點D處;再將邊BC沿CF翻折,使點B落在CD的延長線上的點B′處,兩條折痕與斜邊AB分別交于點E,F(xiàn),則線段B′F的長為( )

A.
B.
C.
D.

查看答案和解析>>

同步練習冊答案