【題目】小明騎單車上學,當他騎了一段路時,想起要買某本書,于是又折回到剛經(jīng)過的某書店,買到書后繼續(xù)去學校,以下是他本次上學所用的時間與路程的關(guān)系示意圖
根據(jù)圖中提供的信息回答下列問題
(1)小明家到學校的路程是__________米,從家到學校一共用了__________分鐘.
(2)小明在書店停留了__________分鐘.
(3)本次上學途中,小明12到14分行駛了__________米.12到14分的速度__________米/分.
(4)在整個上學的途中__________(哪個時間段)速度最快.
【答案】1500 14 4 900 450 12~14
【解析】
(1)根據(jù)函數(shù)圖象中的數(shù)據(jù)可以得到小明家到學校的路程和從家到學校的時間;
(2)根據(jù)函數(shù)圖象可以得到小明在書店停留的時間;
(3)根據(jù)函數(shù)圖象中的數(shù)據(jù)可以得到本次上學途中,小明12到14分行駛的路程和速度;
(4)根據(jù)題意和函數(shù)圖象可以得到各段內(nèi)對應(yīng)的速度,從而可以解答本題.
解:(1)由圖象可得,
小明家到學校的路程是1500米;
從家到學校一共用了14分鐘;
故答案為:1500;14;
(2)小明在書店停留了12-8=4(分鐘),
故答案為:4;
(3)本次上學途中,小明12到14分行駛的路程:1500-600=900(米);
12到14分的速度為:(米/分鐘)
故答案為:900,450;
(4)當時間在0~6分鐘內(nèi)時,速度為:1200÷6=200米/分鐘,
當時間在6~8分鐘內(nèi)時,速度為:(1200-600)÷(8-6)=300米/分鐘,
當時間在12~14分鐘內(nèi)時,速度為:(1500-600)÷(14-12)=450米/分鐘,
∴在整個上學途中12~14分鐘小明的騎車速度最快.
故答案為:12~14;
科目:初中數(shù)學 來源: 題型:
【題目】如圖,一座堤壩的橫截面是梯形,根據(jù)圖中給出的數(shù)據(jù),求壩高和壩底寬(精確到0.1m)參考數(shù)據(jù):≈1.414,≈1.732
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,AB與⊙O相切于點B,BC為⊙O的弦,OC⊥OA,OA與BC相交于點P.
(1)求證:AP=AB;
(2)若OB=4,AB=3,求線段BP的長.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】(感知)如圖①,在四邊形ABCD中,點P在邊AB上(點P不與點A、B重合),∠A=∠B=∠DPC=90°.易證:△DAP∽△PBC(不要求證明).
(探究)如圖②,在四邊形ABCD中,點P在邊AB上(點P不與點A、B重合),∠A=∠B=∠DPC.
(1)求證:△DAP~△PBC.
(2)若PD=5,PC=10,BC=9,求AP的長.
(應(yīng)用)如圖③,在△ABC中,AC=BC=4,AB=6,點P在邊AB上(點P不與點A、B重合),連結(jié)CP,作∠CPE=∠A,PE與邊BC交于點E.當CE=3EB時,求AP的長.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,A,B是反比例函數(shù)y=在第一象限內(nèi)的圖象上的兩點,且A,B兩點的橫坐標分別是2和4,則△OAB的面積是( )
A. 4 B. 3 C. 2 D. 1
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】列方程解應(yīng)用題:
某玩具廠生產(chǎn)一種玩具,按照控制固定成本降價促銷的原則,使生產(chǎn)的玩具能夠及時售出,據(jù)市場調(diào)查:每個玩具按元銷售時,每天可銷售個;若銷售單價每降低元,每天可多售出個.已知每個玩具的固定成本為元,問這種玩具的銷售單價為多少元時,廠家每天可獲利潤元?
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】二次函數(shù)y=ax2+bx+c(a≠0)的部分圖象如圖所示.
(1)確定二次函數(shù)的解析式;
(2)若方程ax2+bx+c=k有兩個不相等的實數(shù)根,求k的取值范圍.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】(本小題滿分12分)
已知:把Rt△ABC和Rt△DEF按如圖(1)擺放(點C與點E重合),點B、C(E)、F在同一條直線上.∠ACB = ∠EDF = 90°,∠DEF = 45°,AC = 8 cm,BC = 6 cm,EF = 9 cm.
如圖(2),△DEF從圖(1)的位置出發(fā),以1 cm/s的速度沿CB向△ABC勻速移動,在△DEF移動的同時,點P從△ABC的頂點B出發(fā),以2 cm/s的速度沿BA向點A勻速移動.當△DEF的頂點D移動到AC邊上時,△DEF停止移動,點P也隨之停止移動.DE與AC相交于點Q,連接PQ,設(shè)移動時間為t(s)(0<t<4.5).
解答下列問題:
(1)當t為何值時,點A在線段PQ的垂直平分線上?
(2)連接PE,設(shè)四邊形APEC的面積為y(cm2),求y與t之間的函數(shù)關(guān)系式;是否存在某一時刻t,使面積y最。咳舸嬖,求出y的最小值;若不存在,說明理由.
(3)是否存在某一時刻t,使P、Q、F三點在同一條直線上?若存在,求出此時t的值;若不存在,說明理由.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】在一次數(shù)學活動課上,老師帶領(lǐng)同學們?nèi)y量一座古塔CD的高度.他們首先從A處安置測傾器,測得塔頂C的仰角∠CFE=21°,然后往塔的方向前進50米到達B處,此時測得仰角∠CGE=37°,已知測傾器高1.5米,請你根據(jù)以上數(shù)據(jù)計算出古塔CD的高度.
(參考數(shù)據(jù):sin37° ,tan37° ,sin21°≈,tan21°≈ )
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com