【題目】(本小題滿分12分)
已知:把Rt△ABC和Rt△DEF按如圖(1)擺放(點C與點E重合),點B、C(E)、F在同一條直線上.∠ACB = ∠EDF = 90°,∠DEF = 45°,AC = 8 cm,BC = 6 cm,EF = 9 cm.
如圖(2),△DEF從圖(1)的位置出發(fā),以1 cm/s的速度沿CB向△ABC勻速移動,在△DEF移動的同時,點P從△ABC的頂點B出發(fā),以2 cm/s的速度沿BA向點A勻速移動.當△DEF的頂點D移動到AC邊上時,△DEF停止移動,點P也隨之停止移動.DE與AC相交于點Q,連接PQ,設移動時間為t(s)(0<t<4.5).
解答下列問題:
(1)當t為何值時,點A在線段PQ的垂直平分線上?
(2)連接PE,設四邊形APEC的面積為y(cm2),求y與t之間的函數(shù)關系式;是否存在某一時刻t,使面積y最小?若存在,求出y的最小值;若不存在,說明理由.
(3)是否存在某一時刻t,使P、Q、F三點在同一條直線上?若存在,求出此時t的值;若不存在,說明理由.
【答案】
(1)t=2
(2)當t = 3時,y最小=
(3)當t = 1s,點P、Q、F三點在同一條直線上
【解析】
解:(1)∵點A在線段PQ的垂直平分線上,
∴AP = AQ.
∵∠DEF = 45°,∠ACB = 90°,∠DEF+∠ACB+∠EQC = 180°,
∴∠EQC = 45°.
∴∠DEF =∠EQC.
∴CE = CQ.
由題意知:CE = t,BP =2 t,
∴CQ = t.
∴AQ = 8-t.
在Rt△ABC中,由勾股定理得:AB = 10 cm .
則AP = 10-2 t.
∴10-2 t = 8-t.
解得:t = 2.
答:當t = 2 s時,點A在線段PQ的垂直平分線上. 4分
(2)過P作,交BE于M,∴.
在Rt△ABC和Rt△BPM中,,
∴ . ∴PM = .
∵BC = 6 cm,CE = t, ∴ BE = 6-t.
∴y = S△ABC-S△BPE =-= -
= = .
∵,∴拋物線開口向上.
∴當t = 3時,y最小=.
答:當t = 3s時,四邊形APEC的面積最小,最小面積為cm2.8分
(3)假設存在某一時刻t,使點P、Q、F三點在同一條直線上.
過P作,交AC于N,
∴.
∵,∴△PAN ∽△BAC.
∴.
∴.
∴,.
∵NQ = AQ-AN,
∴NQ = 8-t-() = .
∵∠ACB = 90°,B、C(E)、F在同一條直線上,
∴∠QCF = 90°,∠QCF = ∠PNQ.
∵∠FQC = ∠PQN,
∴△QCF∽△QNP .
∴ . ∴ .
∵ ∴
解得:t = 1.
答:當t = 1s,點P、Q、F三點在同一條直線上. 12分
科目:初中數(shù)學 來源: 題型:
【題目】某商場,為了吸引顧客,在“白色情人節(jié)”當天舉辦了商品有獎酬賓活動,凡購物滿200元者,有兩種獎勵方案供選擇:一是直接獲得20元的禮金券,二是得到一次搖獎的機會.已知在搖獎機內(nèi)裝有2個紅球和2個白球,除顏色外其它都相同,搖獎者必須從搖獎機內(nèi)一次連續(xù)搖出兩個球,根據(jù)球的顏色(如表)決定送禮金券的多少.
球 | 兩紅 | 一紅一白 | 兩白 |
禮金券(元) | 18 | 24 | 18 |
(1)請你用列表法(或畫樹狀圖法)求一次連續(xù)搖出一紅一白兩球的概率.
(2)如果一名顧客當天在本店購物滿200元,若只考慮獲得最多的禮品券,請你幫助分析選擇哪種方案較為實惠.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,在△ABC中,∠ACB=90°,點E,F在邊AB上,將邊AC沿CE翻折,使點A落在AB上的點D處,再將邊BC沿CF翻折,使點B落在CD的延長線上的點B'處.
(1)求∠ECF的度數(shù);
(2)若CE=4,B'F=1,求線段BC的長和△ABC的面積.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖是二次函數(shù)y=ax2+bx+c(a≠0)圖象的一部分,x=﹣1是對稱軸,有下列判斷:①b﹣2a=0;②4a﹣2b+c<0;③a﹣b+c=﹣9a;④若(﹣3,y1),(,y2)是拋物線上兩點,則y1>y2,其中正確的是( )
A. ①②③ B. ①③④ C. ①②④ D. ②③④
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,已知直線l與⊙O 相離,OA⊥l于點A,交⊙O 于點P,點B是⊙O上一點,連接BP并延長,交直線l于點C,使得AB=AC.
(1)求證:AB是⊙O的切線;
(2)若PC=2,OA=3,求線段PB的長.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,已知函數(shù) y=x+1 的圖象與 y 軸交于點 A,一次函數(shù) y=kx+b 的圖象經(jīng)過點 B(0,﹣1),與x 軸 以及 y=x+1 的圖象分別交于點 C、D,且點 D 的坐標為(1,n),
(1)則n= ,k= ,b= ;
(2)函數(shù) y=kx+b 的函數(shù)值大于函數(shù) y=x+1 的函數(shù)值,則X的取值范圍是 ;
(3)求四邊形 AOCD 的面積;
(4)在 x軸上是否存在點 P,使得以點 P,C,D 為頂點的三角形是直角三角形?若存在求出點 P 的坐標; 若不存在,請說明理由.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com