【題目】如圖,是一種斜挎包,其挎帶由雙層部分、單層部分和調(diào)節(jié)扣構成.小敏用后發(fā)現(xiàn),通過調(diào)節(jié)扣加長或縮短單層部分的長度,可以使挎帶的長度(單層部分與雙層部分長度的和,其中調(diào)節(jié)扣所占的長度忽略不計)加長或縮短.設單層部分的長度為,雙層部分的長度為,經(jīng)測量,得到如下數(shù)據(jù):

1)求出關于的函數(shù)解析式,并求當的值;

2)根據(jù)小敏的身高和習慣,挎帶的長度為時,背起來正合適,請求出此時單層部分的長度;

3)設挎帶的長度為,求的取值范圍.

【答案】1,;(2)單層部分的長度為;(3

【解析】

1)觀察表格可知,yx的一次函數(shù),設y=kx+b,利用待定系數(shù)法即可解決問題;
2)列出方程組即可解決問題;
3)由題意當y=0x=150,當x=0時,y=75,可得75≤l≤150

1)觀察表格可知,的一次函數(shù),設,

則有,解得,

時,;

2)由題意,解得

∴單層部分的長度為

3)由題意當,,當時,,

練習冊系列答案
相關習題

科目:初中數(shù)學 來源: 題型:

【題目】如圖,的平分線相交于點P,PBCE交于點H,BCF,交ABG,下列結論:①;②;③ BP垂直平分CE;④,其中正確的判斷有(

A. ①②B. ③④C. ①③④D. ①②③④

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖1所示的是午休時老師們所用的一種折疊椅,現(xiàn)將躺椅以如圖2所示的方式傾斜放置,AM與地面ME45°角,ABME,椅背BC與水平線成30°角,其中AM50厘米,BC72厘米,BP是躺椅的伸縮支架,且30°≤BPM90°.(結果精確到1厘米;參考數(shù)據(jù)1.4 1.7, 2.2)

(1)求此時點C與地面的距離.

(2)(1)的條件下,求伸縮支架BP可達到的最大值.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】某校為了解學生的安全意識情況,在全校范圍內(nèi)隨機抽取部分學生進行問卷調(diào)查,根據(jù)調(diào)查結果,把學生的安全意識分成淡薄”、“一般”、“較強”、“很強四個層次,并繪制成如下兩幅尚不完整的統(tǒng)計圖.

根據(jù)以上信息,解答下列問題:

(1)這次調(diào)查一共抽取了 名學生,其中安全意識為很強的學生占被調(diào)查學生總數(shù)的百分比是 ;

(2)請將條形統(tǒng)計圖補充完整;

(3)該校有1800名學生,現(xiàn)要對安全意識為淡薄”、“一般的學生強化安全教育,根據(jù)調(diào)查結果,估計全校需要強化安全教育的學生約有 名.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,已知二次函數(shù)y=ax2+bx+c(a0)的圖象與x軸交于點A(﹣1,0),對稱軸為直線x=1,與y軸的交點B在(0,2)和(0,3)之間(包括這兩點),下列結論:

①當x3時,y0;②3a+b0;③﹣1a;④4ac﹣b28a;

其中正確的結論是(

A.①③④ B.①②③ C.①②④ D.①②③④

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖1,矩形的一條邊長為x,周長的一半為y,定義(x,y)為這個矩形的坐標。如圖2,在平面直角坐標系中,直線x=1,y=3將第一象限劃分成4個區(qū)域,已知矩形1的坐標的對應點A落在如圖所示的雙曲線上,矩形2的坐標的對應點落在區(qū)域④中,則下面敘述中正確的是( )

A. A的橫坐標有可能大于3

B. 矩形1是正方形時,點A位于區(qū)域②

C. 當點A沿雙曲線向上移動時,矩形1的面積減小

D. 當點A位于區(qū)域①時,矩形1可能和矩形2全等

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】在平面直角坐標系xOy中,已知拋物線yx2﹣2ax+b的頂點在x軸上,Px1,m,Qx2m)(x1x2是此拋物線上的兩點.

(1)a=1.

①當mb時,求x1,x2的值;

②將拋物線沿y軸平移,使得它與x軸的兩個交點間的距離為4,試描述出這一變化過程;

(2)若存在實數(shù)c,使得x1c﹣1,且x2c+7成立,則m的取值范圍是_______.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,在直角坐標系中,矩形的頂點與坐標原點重合,頂點分別在坐標軸的正半軸上, ,在直線,直線與折線有公共點.

1)點的坐標是

2)若直線經(jīng)過點,求直線的解析式;

3)對于一次函數(shù),當的增大而減小時,直接寫出的取值范圍.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,四邊形ABCD為平行四邊形,延長ADE,使DEAD,連接EB,ECDB,下列條件中,不能使四邊形DBCE成為菱形的是( 。

A.ABBEB.BEDCC.ABE90°D.BE平分∠DBC

查看答案和解析>>

同步練習冊答案