【題目】如圖,四邊形ABCD內(nèi)接于⊙O,對角線AC⊙O的直徑,過點CAC的垂線交AD的延長線于點E,FCE的中點,連接DB,DF

(1)∠CDE的度數(shù)

(2)求證:DF⊙O的切線

【答案】證明見解析

【解析】試題分析:(1)直接利用圓周角定理得出∠CDE的度數(shù);

(2)直接利用直角三角形的性質(zhì)結(jié)合等腰三角形的性質(zhì)得出∠ODF=∠ODC+∠FDC=∠OCD+∠DCF=90°,進而得出答案.

試題解析:(1)∵對角線ACO的直徑,

∴∠ADC=90°,

∴∠EDC=90°;

(2)連接DO

∵∠EDC=90°,FEC的中點,DF=FC,

∴∠FDC=∠FCD

OD=OC ,∴∠OCD=∠ODC,

∵∠OCF=90°,∴∠ODF=∠ODC+∠FDC=∠OCD+∠DCF=90°,

DFO的切線.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在平面直角坐標系xOy,拋物線與x軸相交于點A-2,0)、B4,0),y軸交于點C0,-4),BC與拋物線的對稱軸相交于點D

1)求該拋物線的表達式并直接寫出點D的坐標;

2)過點AAEAC交拋物線于點E求點E的坐標;

3)在(2)的條件下,F在射線AE,ADF∽△ABC,求點F 的坐標

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖所示,已知四邊形ABCD,ADEF都是菱形,∠BAD=FAD,BAD為銳角.

1)求證:ADBF;

2)若BF=BC,求∠ADC的度數(shù).

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】矩形的對角線所成的角之一是65°,則對角線與各邊所成的角度是( 。

A. 57.5° B. 32.5° C. 57.5°23.5° D. 57.5°,32.5°

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,△ABC中,AB=ACAD、AE分別是∠BAC與∠BAC的外角的平分線,BEAE.求證:AB=DE.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在ABC中,點D為邊BC的中點,點EABC內(nèi),AE平分∠BAC,CEAEFAB上,且BF=DE

1)求證:四邊形BDEF是平行四邊形

2)線段ABBF,AC之間具有怎樣的數(shù)量關(guān)系?證明你所得到的結(jié)論

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】解放中學(xué)為了了解學(xué)生對新聞、體育、動畫、娛樂四類電視節(jié)目的喜愛程度,隨機抽取了部分學(xué)生進行調(diào)查(每人限選1項),現(xiàn)將調(diào)查結(jié)果繪制成如下兩幅不完整的統(tǒng)計圖,根據(jù)圖中所給的信息解答下列問題.

(1)喜愛動畫的學(xué)生人數(shù)和所占比例分別是多少?

(2)請將條形統(tǒng)計圖補充完整;

(3)若該校共有學(xué)生1000人,依據(jù)以上圖表估計該校喜歡體育的人數(shù)約為多少?

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在大樓AB的正前方有一斜坡CD,CD=13米,坡比DE:EC=1 ,高為DE,在斜坡下的點C處測得樓頂B的仰角為64°,在斜坡上的點D處測得樓頂B的仰角為45°,其中A、C、E在同一直線上.

1)求斜坡CD的高度DE

2)求大樓AB的高度;(參考數(shù)據(jù):sin64°≈0.9,tan64°≈2).

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,已知A,B兩點在數(shù)軸上,點A在原點O的左邊,表示的數(shù)為﹣10,點B在原點的右邊,且BO3AO.點M以每秒3個單位長度的速度從點A出發(fā)向右運動.點N以每秒2個單位長度的速度從點O出發(fā)向右運動(點M,點N同時出發(fā)).

1)數(shù)軸上點B對應(yīng)的數(shù)是   ,點B到點A的距離是   ;

2)經(jīng)過幾秒,原點O是線段MN的中點?

3)經(jīng)過幾秒,點M,N分別到點B的距離相等?

查看答案和解析>>

同步練習(xí)冊答案