在△ABC中,它的底邊是a,底邊上的高是h,則三角形面積S=數(shù)學(xué)公式ah,當(dāng)a為定長時(shí),在此式中


  1. A.
    S,h是變量,數(shù)學(xué)公式,a是常量
  2. B.
    S,h,a是變量,數(shù)學(xué)公式是常量
  3. C.
    S,h是變量,數(shù)學(xué)公式,S是常量
  4. D.
    S是變量,數(shù)學(xué)公式,a,h是常量
A
分析:根據(jù)函數(shù)的定義:對(duì)于函數(shù)中的每個(gè)值x,變量y按照一定的法則有一個(gè)確定的值y與之對(duì)應(yīng);來解答即可.
解答:∵三角形面積S=ah,
∴當(dāng)a為定長時(shí),在此式中S、h是變量,
,a是常量;
故本題選A.
點(diǎn)評(píng):函數(shù)的定義:設(shè)x和y是兩個(gè)變量,D是實(shí)數(shù)集的某個(gè)子集,若對(duì)于D中的每個(gè)值x,變量y按照一定的法則有一個(gè)確定的值y與之對(duì)應(yīng),稱變量y為變量x的函數(shù),記作y=f(x);變量是指在程序的運(yùn)行過程中隨時(shí)可以發(fā)生變化的量.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

黃金分割比是生活中比較多見的一種長度比值,它能給人許多美感和科學(xué)性,我們初中階段學(xué)過的許多幾何圖形也有著類似的邊長比例關(guān)系.例如我們熟悉的頂角是36°的等腰三角形,其底與腰之比就為黃金分割比
5
-1
2
,底角平分線與腰的交點(diǎn)為黃金分割點(diǎn).
(1)如圖1,在△ABC中,∠A=36°,AB=AC,∠ACB的角平分線CD交腰AB于點(diǎn)D,請(qǐng)你證明點(diǎn)D是腰AB的黃金分割點(diǎn);
(2)如圖2,在△ABC中,AB=AC,若
AB
BC
=
5
-1
2
,則請(qǐng)你求出∠A的度數(shù);
(3)如圖3,如果在Rt△ABC中,∠ACB=90°,CD為AB上的高,∠A、∠B、∠ACB的對(duì)邊分別為a,b,c.若點(diǎn)D是AB的黃金分割點(diǎn),那么該直角三角形的三邊a,b,c之間是什么數(shù)量關(guān)系?并證明你的結(jié)論.
精英家教網(wǎng)

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

(1)已知:如圖(1)AD是△ABC中BC邊的中線,則S△ABD=S△ACD,依據(jù)是
等底同高
等底同高

(2)如圖2梯形ABCD中,AD∥BC,對(duì)角線AC、BD交于點(diǎn)O,請(qǐng)找出圖中三對(duì)面積相等的三角形,
△ADC和△ADB;△ABC和△DBC;△AOB和△DOC
△ADC和△ADB;△ABC和△DBC;△AOB和△DOC

(3)李明家有一塊四邊形田地,如圖3所示.AE是一條小路,它把田地分成了面積相等的兩部分(小路寬忽略不計(jì)).在CD邊上點(diǎn)F處有一口水井,為方便灌溉田地,李明打算過點(diǎn)F修一條筆直的水渠,且要求水渠也把整個(gè)田地分成面積相等的兩部分(水渠寬忽略不計(jì)).請(qǐng)你幫李明設(shè)計(jì)出修水渠的方案,作圖并寫出設(shè)計(jì)方案.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

如圖,有一塊直角三角形土地,它兩條直角邊AB=300米,AC=400米,某單位要沿著斜邊BC修一座底面是矩形DEFG的大樓,D、G分別在邊AB、AC上,設(shè)EF為x,矩形面積為y.
(1)求△ABC中BC上的高AH;
(2)求y與x之間的函數(shù)關(guān)系;
(3)當(dāng)矩形的長x取何值時(shí),這個(gè)矩形的面積最大?

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:2012年甘肅省中考數(shù)學(xué)仿真模擬試卷(解析版) 題型:解答題

如圖,有一塊直角三角形土地,它兩條直角邊AB=300米,AC=400米,某單位要沿著斜邊BC修一座底面是矩形DEFG的大樓,D、G分別在邊AB、AC上,設(shè)EF為x,矩形面積為y.
(1)求△ABC中BC上的高AH;
(2)求y與x之間的函數(shù)關(guān)系;
(3)當(dāng)矩形的長x取何值時(shí),這個(gè)矩形的面積最大?

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:解答題

黃金分割比是生活中比較多見的一種長度比值,它能給人許多美感和科學(xué)性,我們初中階段學(xué)過的許多幾何圖形也有著類似的邊長比例關(guān)系.例如我們熟悉的頂角是36°的等腰三角形,其底與腰之比就為黃金分割比數(shù)學(xué)公式,底角平分線與腰的交點(diǎn)為黃金分割點(diǎn).
(1)如圖1,在△ABC中,∠A=36°,AB=AC,∠ACB的角平分線CD交腰AB于點(diǎn)D,請(qǐng)你證明點(diǎn)D是腰AB的黃金分割點(diǎn);
(2)如圖2,在△ABC中,AB=AC,若數(shù)學(xué)公式,則請(qǐng)你求出∠A的度數(shù);
(3)如圖3,如果在Rt△ABC中,∠ACB=90°,CD為AB上的高,∠A、∠B、∠ACB的對(duì)邊分別為a,b,c.若點(diǎn)D是AB的黃金分割點(diǎn),那么該直角三角形的三邊a,b,c之間是什么數(shù)量關(guān)系?并證明你的結(jié)論.

查看答案和解析>>

同步練習(xí)冊(cè)答案