【題目】如圖,在矩形ABCD中,AB4,BC6,點(diǎn)EAB中點(diǎn),在AD上取一點(diǎn)G,以點(diǎn)G為圓心,GD的長(zhǎng)為半徑作圓,該圓與BC邊相切于點(diǎn)F,連接DE,EF,則圖中陰影部分面積為( 。

A. 3πB. 4πC. 2π+6D. 5π+2

【答案】B

【解析】

由矩形的性質(zhì)可得ADBC6ADCC90°AB,ABCD4,由切線的性質(zhì)可得GFBC,即可證四邊形GFCD是正方形,可得GDGFCDCF4,由面積的和差可求陰影部分面積.

如圖,連接GF

四邊形ABCD是矩形

ADBC6,ADCC90°AB,ABCD4

點(diǎn)EAB中點(diǎn)

AEBE2

BC與圓相切

GFBC,且ADCC90°

四邊形GFCD是矩形,

GDDF

四邊形GFCD是正方形

GDGFCDCF4

BFBCFC2

S陰影=(S四邊形ABFDSAEDSBEF+S扇形GDFSGDF

S陰影=(+)=4π.

故選B

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】若二次函數(shù)y=ax2-2ax+c的圖象經(jīng)過(guò)點(diǎn)A(0-1),B(-2,y1),C(3,y2),D(y3),且與x軸沒(méi)有交點(diǎn),則y1,y2,y3,的大小關(guān)系是(

A.y1>y2>y3B.y1> y3> y2C.y2> y1>y3D.y3>y2> y1

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖所示,在的方格紙中,每個(gè)小正方形的邊長(zhǎng)均為1,線段的端點(diǎn)、均在小正方形的頂點(diǎn)上.

1)在圖中畫出以為斜邊的直角三角形,點(diǎn)在小正方形頂點(diǎn)上,且;

2)在圖中畫出等腰三角形,點(diǎn)在小正方形的頂點(diǎn)上,且的面積為;

3)連接,請(qǐng)直接寫出的值.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,拋物線軸交于兩點(diǎn),點(diǎn)在點(diǎn)的左側(cè),拋物線與軸正半軸交于點(diǎn),分別連接、,則有,

1)求拋物線的函數(shù)表達(dá)式;

2)設(shè)為拋物線的頂點(diǎn),點(diǎn)為線段上任意一點(diǎn),過(guò)點(diǎn)軸的垂線分別交直線及拋物線于點(diǎn)、點(diǎn),當(dāng)是銳角三角形時(shí),求的取值范圍.

3)在(2)的前提下,設(shè),求 的最大值.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖所示,在平面直角坐標(biāo)系中,菱形 ABCD 的邊 AD∥x 軸,直線y2x+b x 軸交于點(diǎn) B,與反比例函數(shù) yk0)圖象交于點(diǎn) D 和點(diǎn) E,OB3,OA4

1)求反比例函數(shù)和一次函數(shù)的解析式;

2)點(diǎn) P 為線段 BE 上的一個(gè)動(dòng)點(diǎn),過(guò)點(diǎn) P x 軸的平行線,當(dāng)△CDE 被這條平行線分成面積相等的兩部分時(shí),求點(diǎn) P 的坐標(biāo).

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】問(wèn)題情境:

在綜合與實(shí)踐課上,老師讓同學(xué)們以矩形紙片的剪拼為主題開展數(shù)學(xué)活動(dòng).如圖1,將:矩形紙片ABCD沿對(duì)角線AC剪開,得到ABCACD.并且量得AB=2cm,AC=4cm

操作發(fā)現(xiàn):

1)將圖1中的ACD以點(diǎn)A為旋轉(zhuǎn)中心,按逆時(shí)針?lè)较蛐D(zhuǎn),使,得到如圖2所示的,過(guò)點(diǎn)C的平行線,與的延長(zhǎng)線交于點(diǎn)E,則四邊形的形狀是

2)創(chuàng)新小組將圖1中的ACD以點(diǎn)A為旋轉(zhuǎn)中心,按逆時(shí)針?lè)较蛐D(zhuǎn),使B、A、D三點(diǎn)在同一條直線上,得到如圖3所示的,連接,取的中點(diǎn)F,連接AF并延長(zhǎng)至點(diǎn)G,使FG=AF,連接CG、,得到四邊形,發(fā)現(xiàn)它是正方形,請(qǐng)你證明這個(gè)結(jié)論.

實(shí)踐探究:

3)縝密小組在創(chuàng)新小組發(fā)現(xiàn)結(jié)論的基礎(chǔ)上,進(jìn)行如下操作:將ABC沿著BD方向平移,使點(diǎn)B與點(diǎn)A重合,此時(shí)A點(diǎn)平移至點(diǎn),相交于點(diǎn)H,如圖4所示,連接,試求的值.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】參照學(xué)習(xí)函數(shù)的過(guò)程與方法,探究函數(shù)y=的圖象與性質(zhì).

因?yàn)?/span>y=,即y=﹣+1,所以我們對(duì)比函數(shù)y=﹣來(lái)探究.

列表:

x

﹣4

﹣3

﹣2

﹣1

1

2

3

4

y=﹣

1

2

4

﹣4

﹣1

1

y=

2

3

5

﹣3

﹣1

0

描點(diǎn):在平面直角坐標(biāo)系中,以自變量x的取值為橫坐標(biāo),以y=相應(yīng)的函數(shù)值為縱坐標(biāo),描出相應(yīng)的點(diǎn),如圖所示:

(1)請(qǐng)把y軸左邊各點(diǎn)和右邊各點(diǎn),分別用一條光滑曲線順次連接起來(lái);

(2)觀察圖象并分析表格,回答下列問(wèn)題:

①當(dāng)x<0時(shí),yx的增大而   ;(填增大減小”)

y=的圖象是由y=﹣的圖象向   平移   個(gè)單位而得到;

③圖象關(guān)于點(diǎn)   中心對(duì)稱.(填點(diǎn)的坐標(biāo))

(3)設(shè)A(x1,y1),B(x2,y2)是函數(shù)y=的圖象上的兩點(diǎn),且x1+x2=0,試求y1+y2+3的值.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】隨著科技的進(jìn)步和網(wǎng)絡(luò)資源的豐富,在線學(xué)習(xí)已成為更多人的自主學(xué)習(xí)選擇,某校計(jì)劃為學(xué)生提供以下四類在線學(xué)習(xí)方式:在線閱讀、在線聽課、在線答題和在線討論,為了解學(xué)生需求,該校隨機(jī)對(duì)本校部分學(xué)生進(jìn)行了你對(duì)哪類在線學(xué)習(xí)方式最感興趣的調(diào)查,并根據(jù)調(diào)查結(jié)果繪制成如下兩幅不完整的統(tǒng)計(jì)圖.

根據(jù)圖中信息,解答下列問(wèn)題:

1)求本次調(diào)查的學(xué)生總?cè)藬?shù),并通過(guò)計(jì)算補(bǔ)全條形統(tǒng)計(jì)圖;

2)求扇形統(tǒng)計(jì)圖中在線討論對(duì)應(yīng)的扇形圓心角的度數(shù);

3)該校共有學(xué)生1800人,請(qǐng)你估計(jì)該校對(duì)在線閱讀最感興趣的學(xué)生人數(shù).

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,點(diǎn)ORtABC斜邊AB上的一點(diǎn),以OA為半徑的⊙O與邊BC交于點(diǎn)D,與邊AC交于點(diǎn)E,連接AD,且AD平分∠BAC

1)試判斷BC與⊙O的位置關(guān)系,并說(shuō)明理由;

2)若∠BAC=60°,OA=2,求陰影部分的面積(結(jié)果保留π).

查看答案和解析>>

同步練習(xí)冊(cè)答案