【題目】如圖,將△ABC繞頂點A順時針旋轉(zhuǎn)60°后得到△AB1C1,且C1為BC的中點,AB與B1C1相交于D,若AC=2,則線段B1D的長度為_____.
【答案】3.
【解析】
由旋轉(zhuǎn)的性質(zhì)可得AC=AC1,∠AC1B1=∠C=60°,可證△ACC1為等邊三角形,可得BC1=CC1=AC=2,可證∠B=∠C1AB=30°,由含30°的直角三角形的性質(zhì)可求解.
解:根據(jù)旋轉(zhuǎn)的性質(zhì)可知:AC=AC1,∠AC1B1=∠C=60°,
∵旋轉(zhuǎn)角是60°,即∠C1AC=60°,
∴△ACC1為等邊三角形,
又C1為BC的中點,
∴BC1=CC1=AC=AC1=2,
∴∠B=∠C1AB=30°,
∴∠BDC1=∠C1AB+∠AC1B1=90°,
∴BC1=2C1D,
∴C1D=1,
∴BC=B1C1=BC1+CC1=4,
∴B1D=B1C1 -C1D=3,
故答案為:3.
科目:初中數(shù)學(xué) 來源: 題型:
【題目】在平面直角坐標(biāo)系中,直線交軸于點,交軸于點,點在軸正半軸上,拋物線經(jīng)過、兩點,連接,.
(1)求拋物線的解析式:
(2)點在第二象限的拋物線上,過點作于點,交軸于點,若,求的長;
(3)在(2)的條件下,若點和點同在一個象限內(nèi),連接、,,求點坐標(biāo).
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在平面直角坐標(biāo)系中點A(0,3),,過點A作AB的垂線交x軸于點A1,過A1作AA1的垂線交y軸于點A2,過點A2作A1A2的垂線交x軸于點A3……,按此規(guī)律繼續(xù)作下去,直至得到點A2018為止,則點A2018坐標(biāo)為__________.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在Rt△ABC中,∠ABC=90°,以AB為直徑作半圓⊙O交AC于點D,點E為BC的中點,連接DE.
(1)求證:DE是半圓⊙O的切線;
(2)若∠BAC=30°,DE=2,求AD的長.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】某市中招體育測試改革,其中籃球和足球作為選考項目,某商店抓住這一商機決定購進(jìn)一批籃球和足球共200個,這兩種球的進(jìn)價和售價如下表所示:
籃球 | 足球 | |
進(jìn)價(元/個) | 180 | 150 |
售價(元/個) | 250 | 200 |
(1)若商店計劃銷售完這批球后能獲利11600元,問籃球和足球應(yīng)分別購進(jìn)多少個?
(2)設(shè)購進(jìn)籃球個,獲利為元,求與之間的函數(shù)關(guān)系;
(3)若商店計劃投入資金不多于31560元且銷售完這批球后商店獲利不少于11000元,請問有哪幾種購球方案,并寫出獲利最大的購球方案.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,直線l1與l2相交于點P,點P橫坐標(biāo)為﹣1,l1的解析式為y=x+3,且l1與y軸交于點A,l2與y軸交于點B,點A與點B恰好關(guān)于x軸對稱.
(1)求點B的坐標(biāo);
(2)求直線l2的解析式;
(3)若點M為直線l2上一動點,直接寫出使△MAB的面積是△PAB的面積的的點M的坐標(biāo);
(4)當(dāng)x為何值時,l1,l2表示的兩個函數(shù)的函數(shù)值都大于0?
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】為了傳承中華民族優(yōu)秀傳統(tǒng)文化,我市某中學(xué)舉行“漢字聽寫”比賽,賽后整理參賽學(xué)生的成績,將學(xué)生的成績分為A,B,C,D四個等級,并將結(jié)果繪制成圖1的條形統(tǒng)計圖和圖2扇形統(tǒng)計圖,但均不完整.請你根據(jù)統(tǒng)計圖解答下列問題:
(1)求參加比賽的學(xué)生共有多少名?并補全圖1的條形統(tǒng)計圖.
(2)在圖2扇形統(tǒng)計圖中,m的值為_____,表示“D等級”的扇形的圓心角為_____度;
(3)組委會決定從本次比賽獲得A等級的學(xué)生中,選出2名去參加全市中學(xué)生“漢字聽寫”大賽.已知A等級學(xué)生中男生有1名,請用列表法或畫樹狀圖法求出所選2名學(xué)生恰好是一名男生和一名女生的概率.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】請閱讀下列材料,并完成相應(yīng)的任務(wù).
三等分任意角問題是數(shù)學(xué)史上一個著名的問題,直到1837年,數(shù)學(xué)家才證明了“三等分任意角”是不能用尺規(guī)完成的.
在探索中,出現(xiàn)了不同的解決問題的方法
方法一:
如圖(1),四邊形ABCD是矩形,F是DA延長線上一點,G是CF上一點,CF與AB交于點E,且∠ACG=∠AGC,∠GAF=∠F,此時∠ECB=∠ACB.
方法二:
數(shù)學(xué)家帕普斯借助函數(shù)給出一種“三等分銳角”的方法(如圖(2)):將給定的銳角∠AOB置于平面直角坐標(biāo)系中,邊OB在x軸上,邊OA與函數(shù)y=的圖象交于點P,以點P為圓心,以2OP長為半徑作弧交圖象于點R.過點P作x軸的平行線,過點R作y軸的平行線,兩直線相交于點M,連接OM得到∠AOB,過點P作PH⊥x軸于點H,過點R作RQ⊥PH于點Q,則∠MOB=∠AOB.
(1)在“方法一”中,若∠ACF=40°,GF=4,求BC的長.
(2)完成“方法二”的證明.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在中,,點從點出發(fā)以每秒2個單位的速度沿向終點運動,過點作的垂線交折線于點,當(dāng)點不和的頂點重合時,以為邊作等邊三角形,使點和點在直線的同側(cè),設(shè)點的運動時間為(秒).
(1)求等邊三角形的邊長(用含的代數(shù)式表示);
(2)當(dāng)點落在的邊上時,求的值;
(3)設(shè)與重合部分圖形的面積為,求與的函數(shù)關(guān)系式;
(4)作直線,設(shè)點關(guān)于直線的對稱點分別為,直接寫出時的值.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com