【題目】如圖,在Rt△ABC中,∠ACB=90°,E為AC上一點,且AE=BC,過點A作AD⊥CA,垂足為A,且AD=AC,AB、DE交于點F.

(1)判斷線段AB與DE的數(shù)量關(guān)系和位置關(guān)系,并說明理由;
(2)連接BD、BE,若設(shè)BC=a,AC=b,AB=c,請利用四邊形ADBE的面積證明勾股定理.

【答案】
(1)解:AB=DE, AB⊥DE.

如圖2,

∵AD⊥CA,∴∠DAE=∠ACB=90°,

∵AE=BC,∠DAE=∠ACB,AD=AC,∴△ABC≌△DEA,∴AB=DE,

∠3=∠1,∵∠DAE=90°,∴∠1+∠2=90°,∴∠3+∠2=90°,

∴∠AFE=90°,∴AB⊥DE


(2)解:如圖2,

∵S四邊形ADBE= S△ADE+ S△BDE= DE·AF+ DE·BF= DE·AB = c2,

S四邊形ADBE=S△ABE+S△ADB= a2+ b2,

a2+ b2= c2,∴a2+b2=c2.


【解析】(1)由題目中的已知條件可直接得到△ABC≌△DEA,問題得解;(2)四邊形ADBE的兩種構(gòu)成:S四邊形ADBE= S△ADE+ S△BDE
S四邊形ADBE=S△ABE+S△ADB,可驗證勾股定理。

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

【題目】圖象中所反應(yīng)的過程是:張強從家跑步去體育場,在那里鍛煉了一陣后,又去早餐店吃早餐,然后散步走回家,其中x表示時間,y表示張強離家的距離,根據(jù)圖象提供的信息,以下四個說法錯誤的是( )

A.體育場離張強家2.5千米
B.張強在體育場鍛煉了15分鐘
C.體育場離早餐店4千米
D.張強從早餐店回家的平均速度是 千米/小時

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在平面直角坐標(biāo)系中,直線AB與函數(shù)yx>0)的圖象交于點Am,2),B(2,n).過點AAC平行于x軸交y軸于點C,在y軸負(fù)半軸上取一點D,使ODOC,且ACD的面積是6,連接BC

(1)求m,k,n的值;

(2)求ABC的面積.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,直線PA是一次函數(shù)y=x+1的圖象,直線PB是一次函數(shù)y=﹣2x+2的圖象.

(1)求A、B、P三點的坐標(biāo);
(2)求四邊形PQOB的面積.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】下列說法正確的是(

A.兩直線平行,同旁內(nèi)角相等B.兩直線平行,同位角相等

C.兩直線被第三條直線所截,內(nèi)錯角相等D.若一個角的兩邊分別與另一個角的兩邊平行,則這兩個角相等

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】某校機器人興趣小組在如圖所示的矩形場地上開展訓(xùn)練.機器人從點出發(fā),在矩形邊上沿著的方向勻速移動,到達(dá)點時停止移動.已知機器人的速度為個單位長度/,移動至拐角處調(diào)整方向需要(即在、處拐彎時分別用時).設(shè)機器人所用時間為時,其所在位置用點表示,到對角線的距離(即垂線段的長)為個單位長度,其中的函數(shù)圖像如圖所示.

(1)求、的長;

(2)如圖,點分別在線段、上,線段平行于橫軸,、的橫坐標(biāo)分別為、.設(shè)機器人用了到達(dá)點處,用了到達(dá)點處(見圖).若,求的值.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在△ABC中,AB=AC,點D在AC上,且BD=AD, ∠A=36°,則∠DBC=.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】等邊三角形是軸對稱圖形,它的對稱軸共有( )

A. 1 B. 2 C. 3 D. 無數(shù)條

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】Rt△ABC中,∠C=90°,∠B=54°,則∠A的度數(shù)是( 。

A. 66° B. 36° C. 56 D. 46°

查看答案和解析>>

同步練習(xí)冊答案