【題目】如圖,E,F分別是邊長為2cm的正方形ABCD的邊AD,CD上的動點(diǎn),滿足AE=DF,連接BE,AF交于G,連接DG,則DG的最小值是_____.
【答案】(﹣1)cm
【解析】
根據(jù)正方形的性質(zhì)和已知條件,判定三角形全等,根據(jù)全等三角形的性質(zhì)和直角三角形兩個(gè)銳角互余的性質(zhì),得到∠AGB=90°,再利用半徑所對的圓周角是90°的性質(zhì)和兩點(diǎn)間距離最短的知識,即可找到符合題意的的G點(diǎn),進(jìn)而利用勾股定理等即可解出答案.
解:如圖,連接OD,
∵四邊形ABCD是正方形
∴AB=AD=CD,∠BAD=90°=∠ADF
又∵AE=DF
在△ABE和△DAF中,
∴△ABE≌△DAF(SAS)
∴∠DAF=∠ABE
∵∠BAG+∠DAF=90°
∴∠ABE+∠BAG=90°
∴∠AGB=90°
∴點(diǎn)G在以AB為直徑的圓O上,
∴當(dāng)點(diǎn)G在OD上時(shí),DG的長最小,
∴DG=OD﹣OG=
故答案為:(﹣1)cm .
年級 | 高中課程 | 年級 | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在平面直角坐標(biāo)系中A為直線y=x﹣1上一點(diǎn),過原點(diǎn)O的直線與反比例函數(shù)y=﹣圖象交于點(diǎn)B,C.若△ABC為等邊三角形,則點(diǎn)A的坐標(biāo)為_____.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】四邊形ABCD中,對角線AC、BD相互垂直,AC=4,BD=6,順次聯(lián)結(jié)這個(gè)四邊形中點(diǎn)所得的四邊形的面積等于________
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】在⊙O中,直徑AB=6,BC是弦,∠ABC=30°,點(diǎn)P在BC上,點(diǎn)Q在⊙O上,且OP⊥PQ.
(1)如圖1,當(dāng)PQ∥AB時(shí),求PQ的長度;
(2)如圖2,當(dāng)點(diǎn)P在BC上移動時(shí),求PQ長的最大值.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】小李在景區(qū)銷售一種旅游紀(jì)念品,已知每件進(jìn)價(jià)為6元,當(dāng)銷售單價(jià)定為8元時(shí),每天可以銷售200件.市場調(diào)查反映:銷售單價(jià)每提高1元,日銷量將會減少10件,物價(jià)部門規(guī)定:銷售單價(jià)不能超過12元,設(shè)該紀(jì)念品的銷售單價(jià)為x(元),日銷量為y(件),日銷售利潤為w(元).
(1)求y與x的函數(shù)關(guān)系式.
(2)要使日銷售利潤為720元,銷售單價(jià)應(yīng)定為多少元?
(3)求日銷售利潤w(元)與銷售單價(jià)x(元)的函數(shù)關(guān)系式,當(dāng)x為何值時(shí),日銷售利潤最大,并求出最大利潤.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在矩形ABCD中,AB=3,BC=4,將對角線AC繞對角線交點(diǎn)O旋轉(zhuǎn),分別交邊AD、BC于點(diǎn)E、F,點(diǎn)P是邊DC上的一個(gè)動點(diǎn),且保持DP=AE,連接PE、PF,設(shè)AE=x(0<x<3).
(1)填空:PC= ,FC= ;(用含x的代數(shù)式表示)
(2)求△PEF面積的最小值;
(3)在運(yùn)動過程中,PE⊥PF是否成立?若成立,求出x的值;若不成立,請說明理由.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在中,以為直徑的交邊于點(diǎn),過點(diǎn)作于點(diǎn),交于點(diǎn),連結(jié)
(1)求證:
(2)當(dāng)時(shí),求的直徑.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在平面直角坐標(biāo)系xOy中,二次函數(shù)y=ax2﹣4ax+3的圖象與x軸正半軸交于點(diǎn)A、B,與y軸相交于點(diǎn)C,頂點(diǎn)為D,且tan∠CAO=3.
(1)求這個(gè)二次函數(shù)的解析式;
(2)點(diǎn)P是對稱軸右側(cè)拋物線上的點(diǎn),聯(lián)結(jié)CP,交對稱軸于點(diǎn)F,當(dāng)S△CDF:S△FDP=2:3時(shí),求點(diǎn)P的坐標(biāo);
(3)在(2)的條件下,將△PCD沿直線MN翻折,當(dāng)點(diǎn)P恰好與點(diǎn)O重合時(shí),折痕MN交x軸于點(diǎn)M,交y軸于點(diǎn)N,求的值.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺 | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com