【題目】如圖,扇形OAB中,∠AOB=60°,扇形半徑為4,點(diǎn)C上,CDOA,垂足為點(diǎn)D,當(dāng)△OCD的面積最大時,圖中陰影部分的面積為_____

【答案】2π-4

【解析】

OC4,點(diǎn)C上,CDOA,求得DC,運(yùn)用SOCDOD,求得OD時△OCD的面積最大,運(yùn)用陰影部分的面積扇形AOC的面積-△OCD的面積求解.

OC4,點(diǎn)C上,CDOA,∴DC,∴SOCDOD,∴SOCD2OD216OD2)=-OD44OD2=-OD28216,∴當(dāng)OD28,即OD2時△OCD的面積最大,∴DC2,∴∠COA45°,∴陰影部分的面積扇形AOC的面積-△OCD的面積42π4,故答案為2π4.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在平面直角坐標(biāo)系xOy中,已知拋物線y=x2+bx+c經(jīng)過A03),B1,0)兩點(diǎn),頂點(diǎn)為M

1)求b、c的值;

2)若只沿y軸上下平移該拋物線后與y軸的交點(diǎn)為A1,頂點(diǎn)為M1,且四邊形AMM1A1是菱形,寫出平移后拋物線的表達(dá)式.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,拋物線的圖象與x軸交于A、B兩點(diǎn)(點(diǎn)A在點(diǎn)B的左邊),與y軸交于點(diǎn)C,點(diǎn)D為拋物線的頂點(diǎn).

1)求A、B、C的坐標(biāo);

2)點(diǎn)M為線段AB上一點(diǎn)(點(diǎn)M不與點(diǎn)A、B重合),過點(diǎn)Mx軸的垂線,與直線AC交于點(diǎn)E,與拋物線交于點(diǎn)P,過點(diǎn)PPQ∥AB交拋物線于點(diǎn)Q,過點(diǎn)QQN⊥x軸于點(diǎn)N.若點(diǎn)P在點(diǎn)Q左邊,當(dāng)矩形PQMN的周長最大時,求△AEM的面積;

3)在(2)的條件下,當(dāng)矩形PMNQ的周長最大時,連接DQ.過拋物線上一點(diǎn)Fy軸的平行線,與直線AC交于點(diǎn)G(點(diǎn)G在點(diǎn)F的上方).FG=DQ,求點(diǎn)F的坐標(biāo).

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】國務(wù)院辦公廳在2015316日發(fā)布了《中國足球發(fā)展改革總體方案》,這是中國足球史上的重大改革,為進(jìn)一步普及足球知識,傳播足球文化,我市某區(qū)在中小學(xué)舉行了足球在身邊知識競賽,各類獲獎學(xué)生人數(shù)的比例情況如圖所示,其中獲得三等獎的學(xué)生共50名,請結(jié)合圖中信息,解答下列問題:

1)獲得一等獎的學(xué)生人數(shù);

2)在本次知識競賽活動中,A,B,CD四所學(xué)校表現(xiàn)突出,現(xiàn)決定從這四所學(xué)校中隨機(jī)選取兩所學(xué)校舉行一場足球友誼賽,請用畫樹狀圖或列表的方法求恰好選到A,B兩所學(xué)校的概率.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,點(diǎn)P是菱形ABCD的對角線BD上一點(diǎn),連接CP并延長,交AD于E,交BA的延長線于點(diǎn)F.

(1)圖中△APD與哪個三角形全等:_____

(2)猜想:線段PC、PE、PF之間存在什么關(guān)系:_____

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】(本小題滿分12分)如圖,在平面直角坐標(biāo)系xOy中,拋物線)與x軸交于A,B兩點(diǎn)(點(diǎn)A在點(diǎn)B的左側(cè)),經(jīng)過點(diǎn)A的直線ly軸負(fù)半軸交于點(diǎn)C,與拋物線的另一個交點(diǎn)為D,且CD=4AC

1)直接寫出點(diǎn)A的坐標(biāo),并求直線l的函數(shù)表達(dá)式(其中kb用含a的式子表示);

2)點(diǎn)E是直線l上方的拋物線上的動點(diǎn),若△ACE的面積的最大值為,求a的值;

3)設(shè)P是拋物線的對稱軸上的一點(diǎn),點(diǎn)Q在拋物線上,以點(diǎn)A,D,P,Q為頂點(diǎn)的四邊形能否成為矩形?若能,求出點(diǎn)P的坐標(biāo);若不能,請說明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖是二次函數(shù)yax2+bx+c圖象的一部分,圖象過點(diǎn)A(﹣3,0),對稱軸為直線x=﹣1,給出四個結(jié)論:①c0;②若B(﹣y1),C(﹣y2)為圖象上的兩點(diǎn),則y1y2;③2ab0;④0,其中正確的結(jié)論是_____

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】課本中有一道作業(yè)題:有一塊三角形余料ABC,它的邊BC=120mm,高AD=80mm.要把它加工成正方形零件,使正方形的一邊在BC上,其余兩個頂點(diǎn)分別在AB,AC上.

(1)加工成的正方形零件的邊長是多少mm?

(2)如果原題中要加工的零件是一個矩形,且此矩形是由兩個并排放置的正方形所組成,如圖1,此時,這個矩形零件的兩條邊長又分別為多少?請你計算.

(3)如果原題中所要加工的零件只是一個矩形,如圖2,這樣,此矩形零件的兩條邊長就不能確定,但這個矩形面積有最大值,求達(dá)到這個最大值時矩形零件的兩條邊長.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在△AOB中,∠O90°,AO18cm,BO30cm,動點(diǎn)M從點(diǎn)A開始沿邊AO1cm/s的速度向終點(diǎn)O移動,動點(diǎn)N從點(diǎn)O開始沿邊OB2cm/s的速度向終點(diǎn)B移動,一個點(diǎn)到達(dá)終點(diǎn)時,另一個點(diǎn)也停止運(yùn)動.如果M、N兩點(diǎn)分別從AO兩點(diǎn)同時出發(fā),設(shè)運(yùn)動時間為ts時四邊形ABNM的面積為Scm2

(1)S關(guān)于t的函數(shù)關(guān)系式,并直接寫出t的取值范圍;

(2)判斷S有最大值還是有最小值,用配方法求出這個值.

查看答案和解析>>

同步練習(xí)冊答案