【題目】如圖是我國(guó)漢代數(shù)學(xué)家趙爽在注解《周髀算經(jīng)》時(shí)給出的“趙爽弦圖”,圖中四個(gè)直角三角形是全等的,若大正方形ABCD的面積是小正方形EFGH面積的13倍,則的值為______________

【答案】

【解析】分析:設(shè)小正方形EFGH面積是a2,則大正方形ABCD的面積是13a2,則小正方形EFGH邊長(zhǎng)是a,則大正方形ABCD的邊長(zhǎng)是設(shè)AE=DH=x,根據(jù)Rt△AED的勾股定理得出x的值,從而得出比值.

詳解:設(shè)小正方形EFGH面積是a2,則大正方形ABCD的面積是13a2,

∴小正方形EFGH邊長(zhǎng)是a,則大正方形ABCD的邊長(zhǎng)是,

∵圖中的四個(gè)直角三角形是全等的, ∴AE=DH, 設(shè)AE=DH=x,

Rt△AED中,AD2=AE2+DE2, 解得:x1=2a,x2=-3a(舍去),

∴AE=2a,DE=3a, ∴tan∠ADE=

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖所示,將矩形ABCD紙對(duì)折,設(shè)折痕為MN,再把B點(diǎn)疊在折痕線MN上,(如圖點(diǎn)B’),若,則折痕AE的長(zhǎng)為( )

A. B. C. 2 D.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖①,在四邊形中,,,,點(diǎn)從點(diǎn)開(kāi)始沿邊向終點(diǎn)以每秒的速度移動(dòng),點(diǎn)從點(diǎn)開(kāi)始沿邊向終點(diǎn)以每秒的速度移動(dòng),當(dāng)其中一點(diǎn)到達(dá)終點(diǎn)時(shí)運(yùn)動(dòng)停止,設(shè)運(yùn)動(dòng)時(shí)間為秒.

(1)求證:當(dāng)時(shí),四邊形是平行四邊形;

(2)當(dāng)為何值時(shí),線段平分對(duì)角線?并求出此時(shí)四邊形的周長(zhǎng);

(3)當(dāng)為何值時(shí),點(diǎn)恰好在的垂直平分線上?

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】某校八年級(jí)學(xué)生小麗、小強(qiáng)和小紅到某超市參加了社會(huì)實(shí)踐活動(dòng),在活動(dòng)中他們參與了某種水果的銷(xiāo)售工作.已知該水果的進(jìn)價(jià)為8/千克,下面是他們?cè)诨顒?dòng)結(jié)束后的對(duì)話.

小麗:如果以10/千克的價(jià)格銷(xiāo)售,那么每天可售出300千克.

小強(qiáng):如果每千克的利潤(rùn)為3元,那么每天可售出250千克.

小紅:如果以13/千克的價(jià)格銷(xiāo)售,那么每天可獲取利潤(rùn)750元.

【利潤(rùn)=(銷(xiāo)售價(jià)-進(jìn)價(jià))銷(xiāo)售量】

1)請(qǐng)根據(jù)他們的對(duì)話填寫(xiě)下表:

銷(xiāo)售單價(jià)x(元/kg

10

11

13

銷(xiāo)售量ykg




2)請(qǐng)你根據(jù)表格中的信息判斷每天的銷(xiāo)售量y(千克)與銷(xiāo)售單價(jià)x(元)之間存在怎樣的函數(shù)關(guān)系.并求y(千克)與x(元)(x0)的函數(shù)關(guān)系式;

3)設(shè)該超市銷(xiāo)售這種水果每天獲取的利潤(rùn)為W元,求Wx的函數(shù)關(guān)系式.當(dāng)銷(xiāo)售單價(jià)為何值時(shí),每天可獲得的利潤(rùn)最大?最大利潤(rùn)是多少元?

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,已知二次函數(shù)的圖象與y軸的正半軸交于點(diǎn)A,其頂點(diǎn)B在軸的負(fù)半軸上,且OA=OB,對(duì)于下列結(jié)論:①≥0;②;③關(guān)于的方程無(wú)實(shí)數(shù)根;④的最小值為3.其中正確結(jié)論的個(gè)數(shù)為( )

A. 1個(gè) B. 2個(gè) C. 3個(gè) D. 4個(gè)

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】小強(qiáng)在某超市同時(shí)購(gòu)買(mǎi)A,B兩種商品共三次,僅有第一次超市將A,B兩種商品同時(shí)按折價(jià)格出售,其余兩次均按標(biāo)價(jià)出售. 小強(qiáng)三次購(gòu)買(mǎi)A,B商品的數(shù)量和費(fèi)用如下表所示:

A商品的數(shù)量(個(gè))

B商品的數(shù)量(個(gè))

購(gòu)買(mǎi)總費(fèi)用(元)

第一次購(gòu)買(mǎi)

8

6

930

第二次購(gòu)買(mǎi)

6

5

980

第三次購(gòu)買(mǎi)

3

8

1040

(1)求 A,B商品的標(biāo)價(jià);

(2)求的值.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】關(guān)于的方程有兩個(gè)不相等的實(shí)數(shù)根.

求實(shí)數(shù)的取值范圍;

是否存在實(shí)數(shù),使方程的兩個(gè)實(shí)數(shù)根之和等于兩實(shí)數(shù)根之積的算術(shù)平方根?若存在,求出的值;若不存在,說(shuō)明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,點(diǎn)E在正方形ABCD的邊AB上,連接DE,過(guò)點(diǎn)CCFDEF,過(guò)點(diǎn)AAGCFDE于點(diǎn)G

1)求證:DCF≌△ADG

2)若點(diǎn)EAB的中點(diǎn),設(shè)DCF=α,求sinα的值.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,正方形ABCD的邊長(zhǎng)為1,順次連接正方形ABCD四邊的中點(diǎn)得到第一個(gè)正方形A1B1C1D1,再順次連接正方形A1B1C1D1四邊的中點(diǎn)得到第二個(gè)正方形A2B2C2D2…,以此類(lèi)推,則第2018個(gè)正方形A2018B2018C2018D2018的周長(zhǎng)是_____

查看答案和解析>>

同步練習(xí)冊(cè)答案