【題目】一列快車從甲地駛往乙地,一列慢車從乙地駛往甲地,兩車同時(shí)出發(fā),勻速行駛,設(shè)慢車行駛的時(shí)間xh),兩車之間的距離為ykm),圖中的折線表示yx之間的函數(shù)關(guān)系.根據(jù)圖象回答:

1)甲、乙兩地之間的距離為   

2)兩車同時(shí)出發(fā)后   h相遇;

3)慢車的速度為   千米/小時(shí);快車的速度為   千米/小時(shí);

4)線段CD表示的實(shí)際意義是   

【答案】(1) 900km;(2)4;(3) 75,150;(4) 快車到達(dá)乙地后,慢車?yán)^續(xù)行駛到甲地.

【解析】

1)根據(jù)函數(shù)圖象中的數(shù)據(jù)可以得到甲乙兩地之間的距離;
2)根據(jù)函數(shù)圖象中的數(shù)據(jù)可以得到兩車同時(shí)出發(fā)多長時(shí)間相遇;
3)根據(jù)函數(shù)圖象中的數(shù)據(jù)可以計(jì)算出快車和慢車的速度;
4)根據(jù)題意可以寫出線段CD表示的實(shí)際意義.

1)由圖象可得,

甲、乙兩地之間的距離為900km

故答案為:900km;

2)由圖象可得,

兩車同時(shí)出發(fā)后4h相遇,

故答案為:4

3)慢車的速度為:900÷1275km/h,

快車的速度為:900÷475150km/h

故答案為:75,150

4)線段CD表示的實(shí)際意義是快車到達(dá)乙地后,慢車?yán)^續(xù)行駛到甲地,

故答案為:快車到達(dá)乙地后,慢車?yán)^續(xù)行駛到甲地.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

【題目】某校為了分析九年級學(xué)生藝術(shù)考試的成績,隨機(jī)抽查了兩個(gè)班級的各5名學(xué)生的成績,它們分別是:

九(1)班:96,92,9497,96

九(2)班:90,98,97,98,92

通過數(shù)據(jù)分析,列表如下:

1

2)計(jì)算兩個(gè)班級所抽取的學(xué)生藝術(shù)成績的方差,判斷哪個(gè)班學(xué)生藝術(shù)成績比較穩(wěn)定.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖:已知在平面直角坐標(biāo)系中,ABC的位置如圖所示:

1)請寫出點(diǎn)A、BC三點(diǎn)的坐標(biāo).

2)將ABC向右平移6個(gè)單位,再向上平移2個(gè)單位,請?jiān)趫D中作出平移后的ABC',并寫出它們的坐標(biāo):A'(  ),B'(  ),C'(  ).

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,拋物線軸交于兩點(diǎn)軸交于點(diǎn)動(dòng)點(diǎn)沿的邊以每秒個(gè)單位長度的速度由起點(diǎn)向終點(diǎn)運(yùn)動(dòng),過點(diǎn)軸的垂線,交的另一邊于點(diǎn)沿折疊,使點(diǎn)落在點(diǎn)處,設(shè)點(diǎn)的運(yùn)動(dòng)時(shí)間為秒.

1)求拋物線的解析式;

2N為拋物線上的點(diǎn)(點(diǎn)不與點(diǎn)重合)且滿足直接寫出點(diǎn)的坐標(biāo);

3)是否存在某一時(shí)刻,使的面積最大,若存在,求出的值和最大面積;若不存在,請說明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】計(jì)算:

122+0+(﹣0.22014×52014

2)(2a3b3(﹣8ab2÷(﹣4a4b3

3)(2a+12﹣(2a+1)(﹣1+2a

4201922018×2020(運(yùn)用整式乘法公式進(jìn)行計(jì)算)

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,已知ACBC,BDAD,AC 與BD 交于O,AC=BD.

求證:(1)BC=AD;

(2)OAB是等腰三角形.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,拋物線y=ax2+bx過A(4,0),B(1,3)兩點(diǎn),點(diǎn)C、B關(guān)于拋物線的對稱軸對稱,過點(diǎn)B作直線BH⊥x軸,交x軸于點(diǎn)H.

(1)求拋物線的表達(dá)式;
(2)直接寫出點(diǎn)C的坐標(biāo),并求出△ABC的面積;
(3)點(diǎn)P是拋物線上一動(dòng)點(diǎn),且位于第四象限,當(dāng)△ABP的面積為6時(shí),求出點(diǎn)P的坐標(biāo);
(4)若點(diǎn)M在直線BH上運(yùn)動(dòng),點(diǎn)N在x軸上運(yùn)動(dòng),當(dāng)以點(diǎn)C、M、N為頂點(diǎn)的三角形為等腰直角三角形時(shí),請直接寫出此時(shí)△CMN的面積.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,四邊形ABCD是正方形,點(diǎn)E是邊BC的中點(diǎn),∠AEF90°,且EF交正方形外角的平分線CF于點(diǎn)F

1)求證:AEEF

2)(探究1)變特殊為一般:若題中“點(diǎn)E是邊BC的中點(diǎn)”變?yōu)椤包c(diǎn)EBC邊上任意一點(diǎn)”,則上述結(jié)論是否仍然成立?(填“是”或“否”).

3)(探究2)在探究1的前提下,若題中結(jié)論“AEEF”與條件“CF是正方形外角的平分線”互換,則命題是否還成立?請給出證明.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】已知拋物線y=ax2﹣2x+c的對稱軸為直線x=﹣1,頂點(diǎn)為A,與y軸正半軸交點(diǎn)為B,且△ABO的面積為1.

(1)求拋物線的表達(dá)式;
(2)若點(diǎn)P在x軸上,且PA=PB,求點(diǎn)P的坐標(biāo).

查看答案和解析>>

同步練習(xí)冊答案