【題目】如圖,拋物線y=ax2+bx過(guò)A(4,0),B(1,3)兩點(diǎn),點(diǎn)C、B關(guān)于拋物線的對(duì)稱軸對(duì)稱,過(guò)點(diǎn)B作直線BH⊥x軸,交x軸于點(diǎn)H.
(1)求拋物線的表達(dá)式;
(2)直接寫(xiě)出點(diǎn)C的坐標(biāo),并求出△ABC的面積;
(3)點(diǎn)P是拋物線上一動(dòng)點(diǎn),且位于第四象限,當(dāng)△ABP的面積為6時(shí),求出點(diǎn)P的坐標(biāo);
(4)若點(diǎn)M在直線BH上運(yùn)動(dòng),點(diǎn)N在x軸上運(yùn)動(dòng),當(dāng)以點(diǎn)C、M、N為頂點(diǎn)的三角形為等腰直角三角形時(shí),請(qǐng)直接寫(xiě)出此時(shí)△CMN的面積.
【答案】
(1)
解:把點(diǎn)A(4,0),B(1,3)代入拋物線y=ax2+bx中,
得 解得: ,
∴拋物線表達(dá)式為:y=﹣x2+4x;
(2)
解:點(diǎn)C的坐標(biāo)為(3,3),
又∵點(diǎn)B的坐標(biāo)為(1,3),
∴BC=2,
∴S△ABC= ×2×3=3;
(3)
解:過(guò)P點(diǎn)作PD⊥BH交BH于點(diǎn)D,
設(shè)點(diǎn)P(m,﹣m2+4m),
根據(jù)題意,得:BH=AH=3,HD=m2﹣4m,PD=m﹣1,
∴S△ABP=S△ABH+S四邊形HAPD﹣S△BPD,
6= ×3×3+ (3+m﹣1)(m2﹣4m)﹣ (m﹣1)(3+m2﹣4m),
∴3m2﹣15m=0,
m1=0(舍去),m2=5,
∴點(diǎn)P坐標(biāo)為(5,﹣5).
(4)
解:以點(diǎn)C、M、N為頂點(diǎn)的三角形為等腰直角三角形時(shí),分三類情況討論:
①以點(diǎn)M為直角頂點(diǎn)且M在x軸上方時(shí),如圖2,CM=MN,∠CMN=90°,
則△CBM≌△MHN,
∴BC=MH=2,BM=HN=3﹣2=1,
∴M(1,2),N(2,0),
由勾股定理得:MC= = ,
∴S△CMN= × × = ;
②以點(diǎn)M為直角頂點(diǎn)且M在x軸下方時(shí),如圖3,作輔助線,構(gòu)建如圖所示的兩直角三角形:Rt△NEM和Rt△MDC,
得Rt△NEM≌Rt△MDC,
∴EM=CD=5,MD=ME=2,
由勾股定理得:CM= = ,
∴S△CMN= × × = ;
③以點(diǎn)N為直角頂點(diǎn)且N在y軸左側(cè)時(shí),如圖4,CN=MN,∠MNC=90°,作輔助線,
同理得:CN= = ,
∴S△CMN= × × =17;
④以點(diǎn)N為直角頂點(diǎn)且N在y軸右側(cè)時(shí),作輔助線,如圖5,同理得:CN= = ,
∴S△CMN= × × =5;
⑤以C為直角頂點(diǎn)時(shí),不能構(gòu)成滿足條件的等腰直角三角形;
綜上所述:△CMN的面積為: 或 或17或5.
【解析】本題是二次函數(shù)的綜合題,考查了利用待定系數(shù)法求二次函數(shù)的表達(dá)式,考查了等腰直角三角形和全等三角形的判定和性質(zhì);本題的一般思路為:①根據(jù)函數(shù)的表達(dá)式設(shè)出點(diǎn)的坐標(biāo),利用面積公式直接表示或求和或求差列式,求出該點(diǎn)的坐標(biāo);②利用等腰直角三角形的兩直角邊相等,構(gòu)建兩直角三角形全等,再利用全等性質(zhì)與點(diǎn)的坐標(biāo)結(jié)合解決問(wèn)題.(1)利用待定系數(shù)法求二次函數(shù)的表達(dá)式;(2)根據(jù)二次函數(shù)的對(duì)稱軸x=2寫(xiě)出點(diǎn)C的坐標(biāo)為(3,3),根據(jù)面積公式求△ABC的面積;(3)因?yàn)辄c(diǎn)P是拋物線上一動(dòng)點(diǎn),且位于第四象限,設(shè)出點(diǎn)P的坐標(biāo)(m,﹣m2+4m),利用差表示△ABP的面積,列式計(jì)算求出m的值,寫(xiě)出點(diǎn)P的坐標(biāo);(4)分別以點(diǎn)C、M、N為直角頂點(diǎn)分三類進(jìn)行討論,利用全等三角形和勾股定理求CM或CN的長(zhǎng),利用面積公式進(jìn)行計(jì)算.
【考點(diǎn)精析】關(guān)于本題考查的等腰直角三角形,需要了解等腰直角三角形是兩條直角邊相等的直角三角形;等腰直角三角形的兩個(gè)底角相等且等于45°才能得出正確答案.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】某電器超市銷(xiāo)售每臺(tái)進(jìn)價(jià)分別為200元、170元的A、B兩種型號(hào)的電風(fēng)扇,下表是近兩周的銷(xiāo)售情況:
(進(jìn)價(jià)、售價(jià)均保持不變,利潤(rùn) = 銷(xiāo)售收入-進(jìn)貨成本)
(1)求A、B兩種型號(hào)的電風(fēng)扇的銷(xiāo)售單價(jià);
(2)若超市準(zhǔn)備用不多于5400元的金額再采購(gòu)這兩種型號(hào)的電風(fēng)扇共30臺(tái),求A種型號(hào)的電風(fēng)扇最多能采購(gòu)多少臺(tái)?
(3)在(2)的條件下,超市銷(xiāo)售完這30臺(tái)電風(fēng)扇能否實(shí)現(xiàn)利潤(rùn)為1400元的目標(biāo)?若能,請(qǐng)給出相應(yīng)的采購(gòu)方案;若不能,請(qǐng)說(shuō)明理由.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】一列快車(chē)從甲地駛往乙地,一列慢車(chē)從乙地駛往甲地,兩車(chē)同時(shí)出發(fā),勻速行駛,設(shè)慢車(chē)行駛的時(shí)間x(h),兩車(chē)之間的距離為y(km),圖中的折線表示y與x之間的函數(shù)關(guān)系.根據(jù)圖象回答:
(1)甲、乙兩地之間的距離為 ;
(2)兩車(chē)同時(shí)出發(fā)后 h相遇;
(3)慢車(chē)的速度為 千米/小時(shí);快車(chē)的速度為 千米/小時(shí);
(4)線段CD表示的實(shí)際意義是 .
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】用代數(shù)式表示:
(1)比a與b的和小3的數(shù).
(2)比a與b的差的一半大1的數(shù).
(3)比a除以b的商的3倍大8的數(shù).
(4)比a除b的商的3倍大8的數(shù).
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,請(qǐng)?jiān)谙铝兴膫(gè)關(guān)系中,選出兩個(gè)恰當(dāng)?shù)年P(guān)系作為條件,推出四邊形ABCD是平行四邊形,并予以證明.關(guān)系:①AD∥BC;②AB=CD;③∠A=∠C;④∠B+∠C=180°.
(1)寫(xiě)出所有成立的情況(只需填寫(xiě)序號(hào));
(2)選擇其中一種證明.
已知:在四邊形ABCD中, ;
求證:四邊形ABCD是平行四邊形.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,在平面直角坐標(biāo)系中,已知拋物線y=ax2+bx﹣2(a≠0)與x軸交于A(1,0)、B(3,0)兩點(diǎn),與y軸交于點(diǎn)C,其頂點(diǎn)為點(diǎn)D,點(diǎn)E的坐標(biāo)為(0,﹣1),該拋物線與BE交于另一點(diǎn)F,連接BC.
(1)求該拋物線的解析式,并用配方法把解析式化為y=a(x﹣h)2+k的形式;
(2)若點(diǎn)H(1,y)在BC上,連接FH,求△FHB的面積;
(3)一動(dòng)點(diǎn)M從點(diǎn)D出發(fā),以每秒1個(gè)單位的速度平沿行與y軸方向向上運(yùn)動(dòng),連接OM,BM,設(shè)運(yùn)動(dòng)時(shí)間為t秒(t>0),在點(diǎn)M的運(yùn)動(dòng)過(guò)程中,當(dāng)t為何值時(shí),∠OMB=90°?
(4)在x軸上方的拋物線上,是否存在點(diǎn)P,使得∠PBF被BA平分?若存在,請(qǐng)直接寫(xiě)出點(diǎn)P的坐標(biāo);若不存在,請(qǐng)說(shuō)明理由.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】在△ABC中,∠B=60°,D、E分別為AB、BC上的點(diǎn),且AE、CD交于點(diǎn)F.
(1)如圖1,若AE、CD為△ABC的角平分線:
①求∠AFD的度數(shù);
②若AD=3,CE=2,求AC的長(zhǎng);
(2)如圖2,若∠EAC=∠DCA=30°,求證:AD=CE.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】在一條不完整的數(shù)軸上從左到右有點(diǎn)A,B,C,其中AB=2,BC=1,如圖所示,設(shè)點(diǎn)A,B,C所對(duì)應(yīng)數(shù)的和是p.
(1)若以B為原點(diǎn),寫(xiě)出點(diǎn)A,C所對(duì)應(yīng)的數(shù),并計(jì)算p的值;若以C為原點(diǎn),p又是多少?
(2)若原點(diǎn)O在圖中數(shù)軸上點(diǎn)C的右邊,且CO=28,求p.
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com