15.已知:點D在AB上,點E在AC上,BE和CD相交于點O,AD=AE,∠B=∠C.  求證:CD=BE.

分析 由條件證明△ABE≌△ACD即可.

解答 證明:
在△ABE和△ACD中
$\left\{\begin{array}{l}{∠B=∠C}\\{∠A=∠A}\\{AE=CD}\end{array}\right.$
∴△ABE≌△ACD(AAS)
∴CD=BE.

點評 本題主要考查全等三角形的判定和性質(zhì),掌握全等三角形的判定方法(即SSS、SAS、ASA、AAS和HL)和全等三角形的性質(zhì)(即對應(yīng)邊、對應(yīng)角相等)是解題的關(guān)鍵.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:選擇題

17.根據(jù)表中的二次函數(shù)y=ax2+bx+c的自變量x與函數(shù)y的對應(yīng)值,可判斷該二次函數(shù)的圖象與x軸( 。
x-1012
y4-0.5-2-0.5
A.只有一個交點B.有兩個交點,且它們分別在y軸兩側(cè)
C.有兩個交點,且它們均在y軸同側(cè)D.無交點

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:解答題

6.如圖,在△ABC中,BD是∠ABC的平分線,DE∥BC,BC=7,AE=4,求DE的長.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:解答題

3.在平面直角坐標(biāo)系中,已知點P是反比例函數(shù)y=$\frac{k}{x}$圖象上一個動點,以P為圓心的圓始終與y軸相切,設(shè)切點為A.
(1)當(dāng)⊙P運動到與x軸也相切于K點時,如圖1,判斷四邊形OAPK的形狀,并說明理由.
(2)當(dāng)⊙P運動到與x軸相交于B、C兩點時,已知B、C兩點的坐標(biāo)分別為B(1,0)、C(3,0),且四邊形ABCP為菱形,如圖2,求反比例函數(shù)的解析式.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:解答題

10.已知:如圖1,點A在半圓O上運動(不與半圓的兩個端點重合),以AC為對角線作矩形ABCD,使點D落在直徑CE上,CE=8.將△ADC沿AC折疊,得到△AD'C.

(1)求證:AD'是半圓O的切線;
(2)如圖2,當(dāng)AB與CD'的交點F恰好在半圓O上時,連接OA.
①求證:四邊形AOCF是菱形;
②求四邊形AOCF的面積.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:解答題

20.已知直線l1:y=-$\frac{1}{2}$x-1分別與x、y軸交于點A、B.將直線l1平移后過點C(4,0)得到直線l2,l2交直線AD于點E,交y軸于點F,且EA=EC.
(1)求直線l2的解析式;
(2)若點P為x軸上任一點,是否存在點P,使△DEP的周長最小,若存在,求周長的最小值及點P的坐標(biāo);
(3)已知M為第二象限內(nèi)直線l2上任一點,過點M作MN平行于y軸,交直線l1于點N,點H為直線AE上任一點.是否存在點M,使得△MNH是以H點為直角頂點的等腰直角三角形?若存在,求出點M的坐標(biāo);若不存在,請說明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:解答題

7.如圖1,點P為∠MON的平分線上一點,以P為頂點的角的兩邊分別與射線OM,ON交于A,B兩點,如果∠APB繞點P旋轉(zhuǎn)時始終滿足OA•OB=OP2,我們就把∠APB叫做∠MON的智慧角.
(1)如圖2,已知∠MON=90°,點P為∠MON的平分線上一點,以點P為頂點的角的兩邊分別與射線OM,ON交于A,B兩點,且∠APB=135°.求證:∠APB是∠MON的智慧角;
(2)如圖3,C是函數(shù)y=$\frac{3}{x}$(x>0)圖象上的一個動點,過點C的直線CD分別交x軸和y軸于點A,B兩點,且滿足BC=2CA,請求出∠AOB的智慧角∠APB的頂點P的坐標(biāo).

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:解答題

4.如圖,A、B(0,2)兩點關(guān)于x軸對稱,點P為x軸正半軸上任意一點.點C在線段PB上,AC交x軸于點M,CD平分∠ACB交x軸于點D.
(1)如圖,若CB=CM,連BD.求證:BD=MD;
(2)在(1)的條件下,連接AD,若點N在線段AM上(不含A、M點)運動,且NE⊥PD于E,NF⊥AD于F.則在N點運動的過程中,NE+NF的值是否發(fā)生變化?若不變,請證明求值;若變化,請求出變化范圍.
(3)若點C在線段PB(不含P、B兩點)運動,其余條件不變,OH∥CD分別交AC、PB于G,H,在C點的運動過程中,$\frac{AC-BH}{CG}$的值是否發(fā)生變化?若不變,證明并求值;若變化,請求出變化范圍.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:解答題

5.在平面直角坐標(biāo)系中,拋物線y=$\frac{1}{4}$x2-bx+c與x軸交于點A(8,0)、B(2,0)兩點,與y軸交于點C.

(1)如圖1,求拋物線的解析式;
(2)如圖2,點P為第四象限拋物線上一點,連接PB并延長交y軸于點D,若點P的橫坐標(biāo)為t,CD長為d,求d與t的函數(shù)關(guān)系式(并求出自變量t的取值范圍);
(3)如圖3,在(2)的條件下,連接AC,過點P作PH⊥x軸,垂足為點H,延長PH交AC于點E,連接DE,射線DP關(guān)于DE對稱的射線DG交AC于點G,延長DG交拋物線于點F,當(dāng)點G為AC中點時,求點F的坐標(biāo).

查看答案和解析>>

同步練習(xí)冊答案