【題目】如圖,是的中線,,交于點,是的中點,連接.
(1)求證:四邊形是平行四邊形;
(2)若四邊形的面積為,請直接寫出圖中所有面積是的三角形.
【答案】(1)見解析;(2),,,
【解析】
(1)首先證明△AFE≌△DFB可得AE=BD,進而可證明AE=CD,再由AE∥BC可利用一組對邊平行且相等的四邊形是平行四邊形可得四邊形ADCE是平行四邊形;
(2)根據面積公式解答即可.
證明:∵AD是△ABC的中線,
∴BD=CD,
∵AE∥BC,
∴∠AEF=∠DBF,
在△AFE和△DFB中,
,
∴△AFE≌△DFB(AAS),
∴AE=BD,
∴AE=CD,
∵AE∥BC,
∴四邊形ADCE是平行四邊形;
(2)∵四邊形ABCE的面積為S,
∵BD=DC,
∴四邊形ABCE的面積可以分成三部分,即△ABD的面積+△ADC的面積+△AEC的面積=S,
∴面積是S的三角形有△ABD,△ACD,△ACE,△ABE.
科目:初中數學 來源: 題型:
【題目】如圖,在△ABC中,AD是BC邊上的中線,E是AD的中點,過點A作BC的平行線交BE的延長線于點F,連接CF.
(1)求證:AF=DC;
(2)若AB⊥AC,試判斷四邊形ADCF的形狀,并證明你的結論.
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】如圖,平面直角坐標系中,直線1分別交軸、軸于、兩點,點的坐標為,,過點的直線與軸交于點.
(1)求直線的解析式及點的坐標.
(2) 點在軸上從點向點以每秒1個單位長的速度運動(),過點分別作,, 交、于點、,連接,點為的中點.
①判斷四邊形的形狀并證明;
②求出t為何值時線段DG的長最短.
(3)點是軸上的點,在坐標平面內是否存在點,使以、、、為項點的四邊形是菱形?若存在,請直接寫出點的坐標;若不存在,說明理由.
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】某校七年級八個級共有320名學生,男女生人數大致相同,調查小組為調查學生的體質健康水平,開展了一次調查研究,請將下面的過程補全:
收集數據
(1)調查小組計劃選取40名學生的體質健康測試成績作為樣本,下面的取樣方法中,合理的是_______(填字母);
A.抽取七年級1班、2班各20名學生的體質健康測試成績組成樣本
B.抽取各班體育成績較好的學生共40名學生的體質健康測試成績組成樣本
C.從年級中按學號隨機選取男女生各20名學生學生的體質健康測試成績組成樣本
整理、描述數據
抽樣方法確定后,調查小組獲得了40名學生的體質健康測試成績如下:
整理數據,如下表所示:
2019年七年級部分學生的體質健康測試成績統計表
(2)表格中a=______,b=______;
分析數據、得出結論
調查小組將統計后的數據繪制成直方圖如圖所示:
(3)若規(guī)定80分以上(包括80分)為合格健康體質,從合格率的角度看,這兩年的哪年體質測試成績好?說明理由;
(4)體育老師計劃根據2019年的統計數據安排75分以下的同學參加體質加強訓練項目,求全年級約有多少名同學參加此項目.
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】在平面直角坐標系中,O是坐標原點,ABCD的頂點A的坐標為(﹣2,0),點D的坐標為(0,2),點B在x軸的正半軸上,點E為線段AD的中點.
(Ⅰ)如圖1,求∠DAO的大小及線段DE的長;
(Ⅱ)過點E的直線l與x軸交于點F,與射線DC交于點G.連接OE,△OEF′是△OEF關于直線OE對稱的圖形,記直線EF′與射線DC的交點為H,△EHC的面積為3.
①如圖2,當點G在點H的左側時,求GH,DG的長;
②當點G在點H的右側時,求點F的坐標(直接寫出結果即可).
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】某文具店準備購進甲、乙兩種文具袋,已知甲文具袋每個的進價比乙每個進價多2元,經了解,用120元購進的甲文具袋與用90元購進的乙文具袋的數量相等.
(1)分別求甲、乙兩種文具袋每個的進價是多少元?
(2)若該文具店用1200元全部購進甲、乙兩種文具袋,設購進甲x個,乙y個.
①求y關于x的關系式.
②甲每個的售價為10元,乙每個的售價為9元,且在進貨時,甲的購進數量不少于60個,若這批文具袋全部售完可獲利w元,求w關于x的關系式,并說明如何進貨該文具店所獲利潤最大,最大利潤是多少?
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】二次函數y=ax2+bx+c(a≠0)的圖象如圖所示,下列說法:
①2a+b=0;
②當﹣1≤x≤3時,y<0;
③若(x1,y1)、(x2,y2)在函數圖象上,當x1<x2時,y1<y2
④9a+3b+c=0
其中正確的是( 。
A. ①②④ B. ①②③ C. ①④ D. ③④
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】如圖,在Rt△ABC中,∠ACB=90,∠A=60,CD是斜邊AB上的高,若AD=3cm,則斜邊AB的長為( )
A.3cmB.6cmC.9cmD.12cm
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】為宣傳6月6日世界海洋日,某校九年級舉行了主題為“珍惜海洋資源,保護海洋生物多樣性”的知識競賽活動.為了解全年級500名學生此次競賽成績(百分制)的情況,隨機抽取了部分參賽學生的成績,整理并繪制出如下不完整的統計表(表1)和統計圖(如圖).表1知識競賽成績分組統計表
組別 | 分數/分 | 頻數 |
10 | ||
14 | ||
18 |
請根據圖表信息解答以下問題:
(1)本次調查一共隨機抽取了________個參賽學生的成績,表1中________;
(2)所抽取的參賽學生的成績的中位數落在的“組別”是________;
(3)請你估計,該校九年級競賽成績達到80分以上(含80分)的學生約多少人?
查看答案和解析>>
湖北省互聯網違法和不良信息舉報平臺 | 網上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com