【題目】某文具店準(zhǔn)備購進(jìn)甲、乙兩種文具袋,已知甲文具袋每個(gè)的進(jìn)價(jià)比乙每個(gè)進(jìn)價(jià)多2元,經(jīng)了解,用120元購進(jìn)的甲文具袋與用90元購進(jìn)的乙文具袋的數(shù)量相等.
(1)分別求甲、乙兩種文具袋每個(gè)的進(jìn)價(jià)是多少元?
(2)若該文具店用1200元全部購進(jìn)甲、乙兩種文具袋,設(shè)購進(jìn)甲x個(gè),乙y個(gè).
①求y關(guān)于x的關(guān)系式.
②甲每個(gè)的售價(jià)為10元,乙每個(gè)的售價(jià)為9元,且在進(jìn)貨時(shí),甲的購進(jìn)數(shù)量不少于60個(gè),若這批文具袋全部售完可獲利w元,求w關(guān)于x的關(guān)系式,并說明如何進(jìn)貨該文具店所獲利潤最大,最大利潤是多少?
【答案】(1)乙文件袋每個(gè)進(jìn)價(jià)為6元,則甲文件袋每個(gè)為8元;(2)①;②w=﹣2x+600,甲文具袋進(jìn)60個(gè),乙文件袋進(jìn)120個(gè),獲得利潤最大為480元.
【解析】
(1)關(guān)鍵語是“用120元購進(jìn)的甲文具袋與用90元購進(jìn)的乙文具袋的數(shù)量相等”可根據(jù)此列出方程.
(2)①根據(jù)題意再由(1)可列出方程
②根據(jù)甲每個(gè)的售價(jià)為10元,乙每個(gè)的售價(jià)為9元,且在進(jìn)貨時(shí),甲的購進(jìn)數(shù)量不少于60個(gè),若這批文具袋全部售完可獲利w元,可列出方程,求出解析式再根據(jù)函數(shù)圖象,分析x的取值即可解答
解:(1)設(shè)乙文件袋每個(gè)進(jìn)價(jià)為x元,則甲文件袋每個(gè)為(x+2)元,
根據(jù)題意得:
解得x=6
經(jīng)檢驗(yàn),x=6是原分式方程的解
∴x+2=8
答:乙文件袋每個(gè)進(jìn)價(jià)為6元,則甲文件袋每個(gè)為8元
(2)①根據(jù)題意得:8x+6y=1200
y=200﹣
②w=(10﹣8)x+(9﹣6)y=2x+3(200﹣)=﹣2x+600
∵k=﹣2<0
∴w隨x的增大而減小
∵x≥60,且為整數(shù)
∴當(dāng)x=60時(shí),w有最大值為,w=60×(﹣2)+600=480
此時(shí),y=200﹣×60=120
答:甲文具袋進(jìn)60個(gè),乙文件袋進(jìn)120個(gè),獲得利潤最大為480元.
年級 | 高中課程 | 年級 | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來源: 題型:
【題目】小明到服裝店參加社會實(shí)踐活動,服裝店經(jīng)理讓小明幫助解決以下問題:
服裝店準(zhǔn)備購進(jìn)甲乙兩種服裝,甲種每件進(jìn)價(jià)80元,乙種每件進(jìn)價(jià)60元,計(jì)劃購進(jìn)兩種服裝共100件,其中甲種服裝不少于65件.
(1)若購進(jìn)這100件服裝的費(fèi)用不得超過7500,則甲種服裝最多購進(jìn)多少件?
(2)服裝店在銷售中發(fā)現(xiàn):甲服裝平均每天可售出20件,每件盈利40元.經(jīng)市場調(diào)查發(fā)現(xiàn):如果每件甲服裝降價(jià)4元,那么平均每天就可多售出8件,要想平均每天銷售甲服裝上盈利1200元,那么每件甲服裝應(yīng)降價(jià)多少元?
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】在菱形中,.
(1)如圖1,點(diǎn)為線段的中點(diǎn),連接,.若,求線段的長.
(2)如圖2,為線段上一點(diǎn)(不與,重合),以為邊向上構(gòu)造等邊三角形,線段與交于點(diǎn),連接,,為線段的中點(diǎn).連接,判斷與的數(shù)量關(guān)系,并證明你的結(jié)論.
(3)在(2)的條件下,若,請你直接寫出的最小值.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,是的中線,,交于點(diǎn),是的中點(diǎn),連接.
(1)求證:四邊形是平行四邊形;
(2)若四邊形的面積為,請直接寫出圖中所有面積是的三角形.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】(1)完成下面的證明.
如圖,在四邊形中,,是的平分線.求證:.
證明:是的平分線(已知)
__________________(角平分線的定義)
又(已知)
__________________(等量代換)
(____________________________)
(2)已知線段,是的中點(diǎn),在直線上,且,畫圖并計(jì)算的長.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,三角形ABC的面積為1,將三角形ABC沿著過AB的中點(diǎn)D的直線折疊,使點(diǎn)A落在BC邊上的處,折痕為DE,若此時(shí)點(diǎn)E是AC的中點(diǎn),則圖中陰影部分的面積為______________.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,⊙P的圓心為P(﹣3,2),半徑為3,直線MN過點(diǎn)M(5,0)且平行于y軸,點(diǎn)N在點(diǎn)M的上方.
(1)在圖中作出⊙P關(guān)于y軸對稱的⊙P′.根據(jù)作圖直接寫出⊙P′與直線MN的位置關(guān)系.
(2)若點(diǎn)N在(1)中的⊙P′上,求PN的長.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,矩形的對角線,相交于點(diǎn),將沿所在直線折疊,得到.
(1)求證:四邊形是菱形;
(2)若,當(dāng)四邊形是正方形時(shí),等于多少?
(3)若,,是邊上的動點(diǎn),是邊上的動點(diǎn),那么的最小值是多少?
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺 | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com