【題目】如圖,在平面直角坐標系中,直線軸、軸分別角與A、B兩點,P、Q分別是線段OB、AB上的兩個動點,點P從O出發(fā)一每秒2個單位長度的速度向終點B運動,同時Q從B出發(fā),以每秒5個單位的速度向終點A運動,當(dāng)其中一點到達終點時整個運動結(jié)束,設(shè)運動時間為t秒。

(1)求出點Q的坐標(用t的代數(shù)式表示)

(2)若C為OA的中點,連接PQ、CQ,以PQ、CQ為鄰邊作PQCD.

①是否存在時間t,使得坐標軸切好將PQCD的面積分為1:5的兩個部分,若存在,求出t的值;若不存在,請說明理由.

②直接寫出整個運動過程中PQCD對角線DQ的取值范圍.

【答案】(1);(2)①t=1或1.5;②4DQ4

【解析】

1)先利用勾股定理求出AB,再判斷出BEQ∽△BOA,得出比例式,代值求解即可得出結(jié)論;

2)①分兩種情況,利用同高的兩三角形的面積的比等于底的比,求解得出結(jié)論;

②利用兩點間距離公式,得出DQ2,再用函數(shù)的性質(zhì)即可得出結(jié)論.

解:(1)如圖1,

針對于直線y,

x0,則y6,

B06),

OB6,

y0,則0,

x8,

A8,0),

OA8,

根據(jù)勾股定理得,AB10,

由運動知,BQ5t,

過點QQEy軸于E,

QEAO

∴△BEQ∽△BOA,

,

BQ3t,EQ4t,

OEOBBE63t,

Q4t,63t);

2)連接DQ,CP,由運動知,OP2t,

P0,2t),

∵點COA的中點,

C4,0),

∵四邊形CQPD是平行四邊形,

DQCP互相平分,

設(shè)Dmn),

由(1)知,Q4t,63t);

4t+m4,63t+n2t,

m44t,n5t6,

D44t,5t6),

①Ⅰ、當(dāng)x軸將將PQCD的面積分為15的兩個部分時,如圖2,

PC是平行四邊形PQCD的對角線,

SPCQSPCD,

SCDFS四邊形CFPQ15,

SCDFSCPF12

DFPF12,

PFDF21,

過點DDGy軸于G,

OG65t,

DGFO,

,

t1,【注:點D本身在y軸上,為了解決問題,沒將點D放在y軸上】

Ⅱ、當(dāng)x軸將將PQCD的面積分為15的兩個部分時,如圖3,

過點DDNx軸于N,

同Ⅰ的方法得,t1.5,

即:坐標軸剛好將PQCD的面積分為15的兩個部分時,t1秒或1.5秒;

②由(1)知,Q4t,63t),

D44t,5t6),

DQ2=(44t4t2+63t5t+62128t12+32

由運動知,0≤t≤2

∴當(dāng)t1時,DQ2最小32,

DQ最小4,

當(dāng)t02時,DQ2最大160,

DQ最大4,

4DQ≤4

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,拋物線y=ax2+bx+c經(jīng)過點(﹣1,0),對稱軸l如圖所示,則下列結(jié)論:abc>0;a﹣b+c=0;2a+c<0;a+b<0,其中所有正確的結(jié)論是(

A.①③ B.②③ C.②④ D.②③④

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】某調(diào)查機構(gòu)將今年紹興市民最關(guān)注的熱點話題分為消費.教育.環(huán)保.反腐及其它共五類.根據(jù)最近一次隨機調(diào)查的相關(guān)數(shù)據(jù),繪制的統(tǒng)計圖表如下:

根據(jù)以上信息解答下列問題:

1)本次共調(diào)查_________人,請在答題卡上補全條形統(tǒng)計圖并標出相應(yīng)數(shù)據(jù);

2)若紹興市約有500萬人口,請你估計最關(guān)注教育問題的人數(shù)約為多少萬人?

3)在這次調(diào)查中,某單位共有甲...丁四人最關(guān)注教育問題,現(xiàn)準備從這四中隨機抽取兩人進行座談,求抽取的兩人恰好是甲和乙的概率(畫樹狀圖或列表說明).

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在平面直角坐標系中,直線ly=-2x-8分別與x軸,y軸相交于AB兩點,點P0k)是y軸的負半軸上的一個動點,以P為圓心,3為半徑作⊙P

1)若⊙Px軸有公共點,則k的取值范圍是______

2)連接PA,若PA=PB,試判斷⊙Px軸的位置關(guān)系,并說明理由;

3)當(dāng)⊙P與直線l相切時,k的值為______

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在平面直角坐標系xOy中,有一個由六個邊長為1的正方形組成的圖案,其中點A,B的坐標分別為(3,5),(6,1).若過原點的直線l將這個圖案分成面積相等的兩部分,則直線l的函數(shù)解析式為_____

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】某市某中學(xué)積極響應(yīng)創(chuàng)建全國文明城市活動,舉辦了以“校園文明”為主題的手抄報比賽.所有參賽作品均獲獎,獎項分為一等獎、二等獎、三等獎和優(yōu)秀獎,將獲獎結(jié)果繪制成如右兩幅統(tǒng)計圖.請你根據(jù)圖中所給信息解答意)

1)等獎所占的百分比是________;三等獎的人數(shù)是________人;

2)據(jù)統(tǒng)計,在獲得一等獎的學(xué)生中,男生與女生的人數(shù)比為,學(xué)校計劃選派1名男生和1名女生參加市手抄報比賽,請求出所選2位同學(xué)恰是1名男生和1名女生的概率;

3)學(xué)校計劃從獲得二等獎的同學(xué)中選取一部分人進行集訓(xùn)使其提升為一等獎,要使獲得一等獎的人數(shù)不少于二等獎人數(shù)的2倍,那么至少選取多少人進行集訓(xùn)?

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】某校為了了解七年級1000名學(xué)生的身體健康情況,從該年級隨機抽取了若干名學(xué)生,將他們按體重(均為整數(shù),單位:kg)分成五組(A:39.5﹣46.5;B:46.5﹣53.5;C:53.5﹣60.5;D:60.5﹣67.5;E:67.5﹣74.5),并依據(jù)統(tǒng)計數(shù)據(jù)繪制了如下兩幅尚不完整的統(tǒng)計圖.

請解答下列問題:

(1)這次隨機抽取了   名學(xué)生調(diào)查,并補全頻數(shù)分布直方圖;

(2)在抽取調(diào)查的若干名學(xué)生中體重在   組的人數(shù)最多,在扇形統(tǒng)計圖中D組的圓心角是   度;

(3)請你估計該校七年級體重超過60kg的學(xué)生大約有多少名?

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】(探索發(fā)現(xiàn))

如圖,是等邊三角形,點邊上一個動點,將繞點逆時針旋轉(zhuǎn)得到,連接.小明在探索這個問題時發(fā)現(xiàn)四邊形是菱形.

小明是這樣想的:

1)請參考小明的思路寫出證明過程;

2)直接寫出線段,,之間的數(shù)量關(guān)系:______________;

(理解運用)

如圖,在中,于點.繞點逆時針旋轉(zhuǎn)得到,延長,交于點.

3)判斷四邊形的形狀,并說明理由;

(拓展遷移)

4)在(3)的前提下,如圖,將沿折疊得到,連接,若,求的長.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,,,以為直徑作半圓,圓心為.以點為圓心,為半徑作弧,過點的平行線交兩弧于點、,則陰影部分的面積是(

A.B.C.D.

查看答案和解析>>

同步練習(xí)冊答案