【題目】如圖1,長方形ABCD中,AB=5,AD=12,E為AD邊上一點(diǎn),DE=4,動(dòng)點(diǎn)P從點(diǎn)B出發(fā),沿B→C→D以2個(gè)單位/s作勻速運(yùn)動(dòng),設(shè)運(yùn)動(dòng)時(shí)間為t.
⑴ 當(dāng)t為 s時(shí),△ABP與△CDE全等;
⑵ 如圖2,EF為△AEP的高,當(dāng)點(diǎn)P在BC邊上運(yùn)動(dòng)時(shí),EF的最小值是 ;
⑶ 當(dāng)點(diǎn)P在EC的垂直平分線上時(shí),求出t的值.
【答案】(1)2;(2) ;(3)t的值為或.
【解析】
(1)由△ABP與△CDE全等可得,通過時(shí)間=路程速度可以得出;
(2)當(dāng)P點(diǎn)運(yùn)動(dòng)到C點(diǎn)時(shí),EF最小,據(jù)此利用面積法求解;
(3)分兩種情況討論:當(dāng)點(diǎn)P在BC上時(shí)或當(dāng)點(diǎn)P在CD上時(shí),分別利用勾股定理求解即可.
解:
⑴當(dāng)△ABP與△CDE全等時(shí),
∴,
⑵ 如圖示,
依題意得:當(dāng)P點(diǎn)運(yùn)動(dòng)到C點(diǎn)時(shí),EF最小,
∵AB=5,AD=12,
∴由勾股定理可得:
根據(jù) ,可得
即:
∴
⑶ ∵ 點(diǎn)P在EC的垂直平分線上
∴ PC=PE
1.如圖,當(dāng)點(diǎn)P在BC上時(shí),過點(diǎn)P作PF⊥AD于點(diǎn)F
則 PF=5,AF=BP=2t,PC=12-2t,EF=8-2t
Rt△PFE中,
∴
解得:
2.當(dāng)點(diǎn)P在CD上時(shí),PE=PC=2t-12,PD=17-2t
∵ ∠D=90°
∴
解得:
綜上所述:當(dāng)點(diǎn)P在EC的垂直平分線上時(shí), t的值為或
年級 | 高中課程 | 年級 | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,已知四邊形ABCD的一組對邊AD、BC的延長線相交于點(diǎn)E.另一組對邊AB、DC的延長線相交于點(diǎn)F,若cos∠ABC=cos∠ADC=,CD=5,CF=ED=n,則AD的長為_____(用含n的式子表示).
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,△ABC中,∠ACB=90°,AB=5cm,BC=4cm,若點(diǎn)P從點(diǎn)A出發(fā),以每秒1cm的速度沿折線A﹣B﹣C﹣A運(yùn)動(dòng),設(shè)運(yùn)動(dòng)時(shí)間為t(t>0)秒.
(1)AC= cm;
(2)若點(diǎn)P恰好在∠ABC的角平分線上,求此時(shí)t的值;
(3)在運(yùn)動(dòng)過程中,當(dāng)t為何值時(shí),△ACP為等腰三角形(直接寫出結(jié)果)
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】數(shù)學(xué)課上,李老師出示了如下框中的題目.
在等邊三角形ABC中,點(diǎn)E在AB上,點(diǎn)D在CB的延長線上,且ED=EC,如圖.試確定線段AE與DB的大小關(guān)系,并說明理由. |
小敏與同桌小聰討論后,進(jìn)行了如下解答:
(1)特殊情況,探索結(jié)論
當(dāng)點(diǎn)E為AB的中點(diǎn)時(shí),如圖1,確定線段AE與的DB大小關(guān)系.請你直接寫出結(jié)論:
AE DB(填“>”,“<”或“=”).
圖1 圖2
(2)特例啟發(fā),解答題目
解:題目中,AE與DB的大小關(guān)系是:AE DB(填“>”,“<”或“=”).
理由如下:如圖2,過點(diǎn)E作EF∥BC,交AC于點(diǎn)F.
(請你完成以下解答過程)
(3)拓展結(jié)論,設(shè)計(jì)新題
在等邊三角形ABC中,點(diǎn)E在直線AB上,點(diǎn)D在直線BC上,且ED=EC.若△ABC的邊長為1,AE=2,求CD的長(請你直接寫出結(jié)果).
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在正方形ABCD中,AD=6,點(diǎn)E是邊CD上的動(dòng)點(diǎn)(點(diǎn)E不與端點(diǎn)C,D重合),AE的垂直平分線FG分別交AD,AE,BC于點(diǎn)F,H,G.當(dāng)=時(shí),DE的長為( )
A. 2 B. C. D. 4
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】已知:如圖,在長方形ABCD中,AB=4,AD=6.延長BC到點(diǎn)E,使CE=2,連接DE,動(dòng)點(diǎn)P從點(diǎn)B出發(fā),以每秒2個(gè)單位的速度沿BC﹣CD﹣DA向終點(diǎn)A運(yùn)動(dòng),設(shè)點(diǎn)P的運(yùn)動(dòng)時(shí)間為t秒,當(dāng)t的值為_____秒時(shí),△ABP和△DCE全等.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】已知:如圖,點(diǎn)P在線段AB外,且PA=PB,求證:點(diǎn)P在線段AB的垂直平分線上,在證明該結(jié)論時(shí),需添加輔助線,則作法不正確的是( 。
A. 作∠APB的平分線PC交AB于點(diǎn)C
B. 過點(diǎn)P作PC⊥AB于點(diǎn)C且AC=BC
C. 取AB中點(diǎn)C,連接PC
D. 過點(diǎn)P作PC⊥AB,垂足為C
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,將△ABC繞點(diǎn)A按逆時(shí)針方向旋轉(zhuǎn)至△AB′C′(B與B′,C與C′分別是對應(yīng)頂點(diǎn)),使AB′⊥BC,B′C′分別交AC,BC于點(diǎn)D,E,已知AB=AC=5,BC=6,則DE的長為_____.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在四邊形中,于點(diǎn),于點(diǎn),平分,且點(diǎn)為的中點(diǎn),連接.
(1)求證:平分;
(2)求的度數(shù).
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺 | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com